
Dynamically-Fulfilled Application 
Constraints through Technical Services

Towards Flexible Component Deployments

OASIS Research Group
INRIA Sophia - I3S - CNRS - University of Nice Sophia Antipolis France

HPC GECO / Compframe, Paris France
Tuesday 20th June 2006

Denis Caromel, Christian Delbé,
Alexandre di Costanzo, and Matthieu Morel

1



Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
2



Constrained Deployment

• Components may require non-functional 
services:

• security, fault-tolerance, etc.

• Some constraints may express 
deployment requirements:

• number of resources expected, timeout, etc.

Describe non-functional and deployment requirements as 
contract in a descriptor of  Virtual Nodes
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Constraints

• Strict separation of non-functional 
requirements from the code

• Using: descriptor of Virtual Nodes

• 2 kinds of constraints:

• Statically fulfilled requirements

• Example: Operating Systems

• Dynamically fulfilled requirements

• Example: fault-tolerance
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Deployment Roles and Artifacts
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ProActive Middleware
A Java API + Tools for Parallel and Distributed Computing

Programing - Wrapping - Composing - Deploying

Multiple network protocols Web Services File transfer

Deployment framework Peer-to-Peer Load balancing

Security Legacy code wrapping Migration

OO SPMD Fault tolerance Exception management

Asynchronism Groups Components

ASP formal model
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Component Based Programming

• Implementation of the Fractal model 
with ProActive:

• Components are implemented as active objects

• Hierarchical components

• Distributed components

• Deployment of components:

• Standardized Architecture Description Language (ADL)
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ADL Example

Composite
interface server 0
component A

interface server 1
interface client 2
vn name=”vn1”

component B
interface server 3
vn name = “vn2”

Bindings
this.0 → A.1
A.2     → B.3

A B

0 1 2 3

ADL
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Deployment Framework

• Avoid deployment specific source code;

• Avoid scripting for configuration, getting 
nodes, connecting, etc.

• Abstract from source code:
• Machine names

• Creation protocols

• Lookup and registry protocols

Supported protocols:
gLite, Unicore, Sun Grid Engine, Globus , ssh, rsh, LSF,  PBS, etc.

XML Deployment file ⇔ Virtual Node (VN)  ⇔ Application
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Virtual Node (VN)

• Identified as a string name

• Used in program code source and/or ADL

• Configured in an XML descriptor file

• Node:
• ProActive execution environment

• Mapping of  VN to Nodes and to JVMs

Program Source Descriptor
Activities → VN VN → Nodes→ JVMs
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Technical Services
• A non-functional requirement that may be 

dynamically fulfilled by adapting the configuration of 
selected resources

• In Deployment Descriptor:
• define configuration in a technical service

• Apply a technical service on a virtual node

• Virtual Node abstracts the nature of nodes
• The configuration is similarly applied on a created and acquired node

• From the technical service programmer point of view:
• Interface: TechnicalService

• From the deployer point of view:
• Set of “variable-value” tuples
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Virtual Node Descriptors

<virtual-nodes>
<virtual-node name=”VN1”>

<technical-service 
type=”services.FaultTolerance”/>
<processor architecture=”x86”/>
<os name=”linux” release=”2.6.15”/>

</virtual-node>
</virtual-nodes>
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Composition of Components with 
renaming of Virtual Nodes

Packaged composite component 4

Virtual Nodes descriptor 4

ADL 4
Comp 1.VN1 --> VNA
Comp 2.VN1 --> VNB

Packaged component 1

ADL 1
VN1

Virtual Nodes descriptor 1

Packaged component2

ADL 2
VN1

Virtual Nodes descriptor 2

Packaged component3

ADL 3
VN3

Virtual Nodes descriptor 3

<virtual-nodes>

<virtual-node name=”VNA”>
<technical-service type=”services.FT”/>
<os name=”linux” release=”2.6.15”/>

</virtual-node> 

<virtual-node name=”VNB”>
<technical-service type=”services.LB”/>

</virtual-node>

<virtual-node name=”VN3” />

</virtual-nodes>
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Deployment on a Peer-to-Peer 
Infrastructure with Fault-Tolerance 

requirements

• Fault-tolerance in ProActive:

• Rollback-recovery: checkpoint-based

• Communication-Induced Checkpointing (CIC)

• Pessimistic Message Logging (PML)

• ...

• Defined in descriptors, not in source code:
Technical Service

• P2P in ProActive: unstructured network for 
sharing JVMs
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Flow-Shop: Master-Slaves

Manager

Manager

Worker Worker Worker Worker Worker

Manager Manager

Manager Manager
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Virtual Nodes Descriptor

<virtual-nodes>
<virtual-node name=”managers”>

<technical-service
             type=”services.FaultTolerance”/>
<processor architecture=”x86”/>

</virtual-node>
<virtual-node name=”workers”/>

</virtual-nodes>
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Packaged component
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XML Deployment Descriptor

<ProActiveDescriptor>
<virtualNodeDefinition>

<virtualNode name=”managers” serviceRefid=”ft-manager”/>
<virtualNode name=”workers”/>

</virtualNodeDefinition>
...
<technicalServiceDefinitions>

<service id=”ft-manager” class=”services.FaultTolerance”>
<arg name=”protocol” value=”PML”/>
<arg name=”server” value=”rmi://hostname/FTServer”/>

</service>
</technicalServiceDefinitions>

</ProActiveDescriptor>
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Conclusion

• Mechanism for specifying environmental 
requirements:
• Defined by designer

• Specify minimun application deployment requirements
• Fulfilled by deployers

• Apply optimal configuration that fulfills requirement

• Work for component-based and object-based 
applications

• Implementation Status:
• Technical Services implemented: Fault tolerance & load balancing

• Problem for combining Technical Services:
• Combining at the code source level

• Virtual node descriptor specified
• Constrained deployment with P2P deployment
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P2P + Fault Tolerance + Load Balancing

With P2P: 5 clusters + INRIA lab desktops = 1007 CPUs
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