Dynamically-Fulfilled Application
Constraints through Technical Services

Towards Flexible Component Deployments

Denis Caromel, Christian Delbé,
Alexandre di Costanzo, and Matthieu Morel

HPC GECO / Compframe, Paris France
Tuesday 20th June 2006

OASIS Research Group
INRIA Sophia - I3S - CNRS - University of Nice Sophia Antipolis France

Agenda

® Problematic

® Constrained deployment

® Context
® The ProActive Grid Middleware
® Component based programming

® Deployment framework

® Solution

® Virtual Node descriptor
® Use case: Fault tolerance & Peer-to-Peer
® Conclusion

Constrained Deployment

® Components may require hon=functional
services:

® security, fault-tolerance, etc.

® Some constraints may express
deployment requirements:

® number of resources expected, timeout, etc.

Describe non-functional and deployment requirements as

contract in a descriptor of Virtual Nodes
\ S — 3

Constraints

® Strict separation of non-functional
requirements from the code

® Using: descriptor of Virtual Nodes
® 2 kinds of constraints:

e Statically fulfilled requirements

® Example: Operating Systems

¢ Dynamically fulfilled requirements

® Example: fault-tolerance

Deployment Roles and Artifacts

s

Packaged component)

Available
physical
infrastructure

Virtual Nodes descriptor
(deployment constraints) Deployment

Qppli(_:a:ion Deployment descriptor
‘:ic_rfD'f“ (Virtual Nodes mapping) | / dynamically applicable

—
I~

_ Technical
considers considers services

writes
provides \

\

—— imposes —

Designer Integrator Deployer

Agenda

® Problematic

® Constrained deployment

e Context
® The ProActive Grid Middleware
® Component based programming

® Deployment framework

® Solution

® Virtual Node descriptor
® Use case: Fault tolerance & Peer-to-Peer
® Conclusion

ProActive Middleware

A Java API + Tools for Parallel and Distributed Computing

ASP formal model
Asynchronism Groups Components
OO SPMD Fault tolerance Exception management
Security Legacy code wrapping Migration
Deployment framework Peer-to-Peer Load balancing

Multiple network protocols Web Services File transfer

Programing - Wrapping - Composing - Deploying

Agenda

® Problematic

® Constrained deployment

® Context
® The ProActive Grid Middleware

® Component based programming

® Deployment framework

® Solution

® Virtual Node descriptor
® Use case: Fault tolerance & Peer-to-Peer
® Conclusion

Component Based Programming

® |mplementation of the Fractal model
with ProActive:

® Components are implemented as active objects
® Hierarchical components

® Distributed components

® Deployment of components:

® Standardized Architecture Description Language (ADL)

ADL Example

ADL

Composite
interface server 0
component A
interface server 1
interface client 2
vh nhame="vn1”
component B
interface server 3
vn name = “vn2”
Bindings
this.0 — A.1
A.2 —B.3

Agenda

® Problematic

® Constrained deployment

e Context
® The ProActive Grid Middleware
® Component based programming

® Deployment framework

® Solution

® Virtual Node descriptor
® Use case: Fault tolerance & Peer-to-Peer
® Conclusion

Deployment Framework

® Avoid deployment specific source code;

® Avoid scripting for configuration, getting
nodes, connecting, etc.

® Abstract from source code:
® Machine names

® Creation protocols
® Lookup and registry protocols

XML Deployment file < Virtual Node (VN) < Application

Supported protocols:
glite, Unicore, Sun Grid Engine, Globus , ssh, rsh, LSF, PBS, etc.

Virtual Node (VN)

|dentified as a string name

Used in program code source and/or ADL

Configured in an XML descriptor file

Node:

® ProActive execution environment
® Mapping of VN to Nodes and to JVMs

Program Source

Descriptor

Activities @ VN

VN — Nodes— |VMs

Deployment Descriptor

App|icati0n ADL
Code

\

Connections ‘ Acquisition Il
I

. I
Creation I Infrastructure |

Deployment Descriptor

\

Agenda

® Problematic

® Constrained deployment

® Context
® The ProActive Grid Middleware
® Component based programming

® Deployment framework

® Solution

® Virtual Node descriptor
® Use case: Fault tolerance & Peer-to-Peer
® Conclusion

Technical Services

A non-functional requirement that may be

dynamically fulfilled by adapting the configuration of
selected resources

In Deployment Descriptor:
e define configuration in a technical service
e Apply a technical service on a virtual node

® Virtual Node abstracts the nature of nodes
® The configuration is similarly applied on a created and acquired node

® From the technical service programmer point of view:
® Interface:TechnicalService

® From the deployer point of view:
® Set of “variable-value” tuples

Virtual Node Descriptors

<virtual-nodes>
<virtual-node name=”’VYN I1”>
<technical-service
type="’services.FaultTolerance”/>
<processor architecture="x86”/>
<0s name="linux” release="2.6.15”/>
</virtual-node>
</virtual-nodes>

Composition of Components with
renaming of Virtual Nodes

Packaged composite component 4 <vVij r’tual-nOd es>

Packaged component 1

Virtual Nodes descriptor 1

DDU % <virtual-node name="VINA”>
== <technical-service type="services.FT”/>
Packaged component2 <OS name:nlinuxn release=”2,6_ I 5,,/>

Virtual Nodes descriptor 2

</virtual-node>
Kl

Packaged component3 <Vi rtual'nOde name=”VN B”>
Virtual Nodes descriptor 3 <technical-service type="services.LB”/>

. %ﬁ </virtual-node>

Virtual Nodes descriptor 4

<virtual-node name="VIN3” />

ADL 4
Comp 1.VN1 --> VNA .
Comp 2.VN1 > VNB </virtual-nodes>
—

Agenda

® Problematic

® Constrained deployment

® Context
® The ProActive Grid Middleware
® Component based programming

® Deployment framework

® Solution

® Virtual Node descriptor
® Use case: Fault tolerance & Peer-to-Peer
® Conclusion

Deployment on a Peer-to-Peer
Infrastructure with Fault-Tolerance

requirements

® Fault-tolerance in ProActive:
® Rollback-recovery: checkpoint-based
® Communication-Induced Checkpointing (CIC)
® Pessimistic Message Logging (PML)

® Defined in descriptors, not in source code:
Technical Service

® P2P in ProActive: unstructured network for
sharing JVMs

Flow-Shop: Master-Slaves

Manager

el

Manager Manager Manager

N

Manager Manager
\

| I
Worker Worker Worker Worker Worker

Deployment Roles and Artifacts

Virtual Nodes descriptor
(deployment constraints)

Applicati}
description
ex : ADL

writes
|/ /

3

Designer

Virtual Nodes Descriptor

<virtual-nodes>
<virtual-node name="managers’”>
<technical-service
type="services.FaultTolerance”/>
<processor architecture="x86"/>
</virtual-node>
<virtual-node name="workers”/>
</virtual-nodes>

Deployment Roles and Artifacts

()

Packaged component

Virtual Nodes descriptor
(deployment constraints)

Application
description
ex : ADL

provides

\

1

Integrator

Deployment Roles and Artifacts

s

Packaged component

|

Virtual Nodes descriptor
(deployment constraints)

Application
description
ex : ADL

~

Available

physical

Deployment infrastructure

Deployment descriptor

(Virtual Nodes mapping) dynamically applicable

Technical

considers services

considers

imposes

Deployer

XML Deployment Descriptor

<ProActiveDescriptor>
<virtualNodeDefinition>
<virtualNode name=" ” serviceRefid="
<virtualNode name=" >
</virtualNodeDefinition>

<technicalServiceDefinitions>
<service id=" ” class="
<arg name=" " value="PML"/>
<arg name=" " value="
</service>
</technicalServiceDefinitions>
</ProActiveDescriptor>

Agenda

® Problematic

® Constrained deployment

® Context
® The ProActive Grid Middleware
® Component based programming

® Deployment framework

® Solution

® Virtual Node descriptor
® Use case: Fault tolerance & Peer-to-Peer
® Conclusion

Conclusion

® |mplementation Status:

® Technical Services implemented: Fault tolerance & load balancing
® Problem for combining Technical Services:
® Combining at the code source level
® Virtual node descriptor specified
® Constrained deployment with P2P deployment

® Mechanism for specifying environmental

requirements:
® Defined by desigher

® Specify minimun application deployment requirements
® Fulfilled by deployers

® Apply optimal configuration that fulfills requirement
® Work for component-based and object-based
applications

P2P + Fault Tolerance + Load Balancing

[— Profctive N Body =X

With P2P: 5 clusters + INRIA lab desktops = 1007 CPUs

29

