
Dynamically-Fulfilled Application
Constraints through Technical Services

Towards Flexible Component Deployments

OASIS Research Group
INRIA Sophia - I3S - CNRS - University of Nice Sophia Antipolis France

HPC GECO / Compframe, Paris France
Tuesday 20th June 2006

Denis Caromel, Christian Delbé,
Alexandre di Costanzo, and Matthieu Morel

1

Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
2

Constrained Deployment

• Components may require non-functional
services:

• security, fault-tolerance, etc.

• Some constraints may express
deployment requirements:

• number of resources expected, timeout, etc.

Describe non-functional and deployment requirements as
contract in a descriptor of Virtual Nodes

3

Constraints

• Strict separation of non-functional
requirements from the code

• Using: descriptor of Virtual Nodes

• 2 kinds of constraints:

• Statically fulfilled requirements

• Example: Operating Systems

• Dynamically fulfilled requirements

• Example: fault-tolerance
4

Deployment Roles and Artifacts

5

Application
description

ex : ADL

Virtual Nodes descriptor
(deployment constraints)

Designer

code

writes

Packaged component

Integrator

provides

Application
description

ex : ADL

Virtual Nodes descriptor
(deployment constraints)

Designer

code

writes

Packaged component

Integrator Deployer

writes
provides

Available
physical

infrastructure

Deployment descriptor
(Virtual Nodes mapping)

Application
description

ex : ADL

Virtual Nodes descriptor
(deployment constraints)

Designer

considers considers

code

writes

Packaged component

Integrator Deployer

writes
provides

dynamically applicable

Available
physical

infrastructure

Technical
services

Deployment descriptor
(Virtual Nodes mapping)

Application
description

ex : ADL

Virtual Nodes descriptor
(deployment constraints) Deployment

Designer

considers considers

code

writes

imposes

Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
6

ProActive Middleware
A Java API + Tools for Parallel and Distributed Computing

Programing - Wrapping - Composing - Deploying

Multiple network protocols Web Services File transfer

Deployment framework Peer-to-Peer Load balancing

Security Legacy code wrapping Migration

OO SPMD Fault tolerance Exception management

Asynchronism Groups Components

ASP formal model

7

Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
8

Component Based Programming

• Implementation of the Fractal model
with ProActive:

• Components are implemented as active objects

• Hierarchical components

• Distributed components

• Deployment of components:

• Standardized Architecture Description Language (ADL)

9

ADL Example

Composite
interface server 0
component A

interface server 1
interface client 2
vn name=”vn1”

component B
interface server 3
vn name = “vn2”

Bindings
this.0 → A.1
A.2 → B.3

A B

0 1 2 3

ADL

10

Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
11

Deployment Framework

• Avoid deployment specific source code;

• Avoid scripting for configuration, getting
nodes, connecting, etc.

• Abstract from source code:
• Machine names

• Creation protocols

• Lookup and registry protocols

Supported protocols:
gLite, Unicore, Sun Grid Engine, Globus , ssh, rsh, LSF, PBS, etc.

XML Deployment file ⇔ Virtual Node (VN) ⇔ Application

12

Virtual Node (VN)

• Identified as a string name

• Used in program code source and/or ADL

• Configured in an XML descriptor file

• Node:
• ProActive execution environment

• Mapping of VN to Nodes and to JVMs

Program Source Descriptor
Activities → VN VN → Nodes→ JVMs

13

Deployment Descriptor
Application

Code
ADL

Deployment Descriptor

VN

Nodes
Mapping

Infrastructure

Connections

Creation

Acquisition

14

Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
15

Technical Services
• A non-functional requirement that may be

dynamically fulfilled by adapting the configuration of
selected resources

• In Deployment Descriptor:
• define configuration in a technical service

• Apply a technical service on a virtual node

• Virtual Node abstracts the nature of nodes
• The configuration is similarly applied on a created and acquired node

• From the technical service programmer point of view:
• Interface: TechnicalService

• From the deployer point of view:
• Set of “variable-value” tuples

16

Virtual Node Descriptors

<virtual-nodes>
<virtual-node name=”VN1”>

<technical-service
type=”services.FaultTolerance”/>
<processor architecture=”x86”/>
<os name=”linux” release=”2.6.15”/>

</virtual-node>
</virtual-nodes>

17

Composition of Components with
renaming of Virtual Nodes

Packaged composite component 4

Virtual Nodes descriptor 4

ADL 4
Comp 1.VN1 --> VNA
Comp 2.VN1 --> VNB

Packaged component 1

ADL 1
VN1

Virtual Nodes descriptor 1

Packaged component2

ADL 2
VN1

Virtual Nodes descriptor 2

Packaged component3

ADL 3
VN3

Virtual Nodes descriptor 3

<virtual-nodes>

<virtual-node name=”VNA”>
<technical-service type=”services.FT”/>
<os name=”linux” release=”2.6.15”/>

</virtual-node>

<virtual-node name=”VNB”>
<technical-service type=”services.LB”/>

</virtual-node>

<virtual-node name=”VN3” />

</virtual-nodes>

18

Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
19

Deployment on a Peer-to-Peer
Infrastructure with Fault-Tolerance

requirements

• Fault-tolerance in ProActive:

• Rollback-recovery: checkpoint-based

• Communication-Induced Checkpointing (CIC)

• Pessimistic Message Logging (PML)

• ...

• Defined in descriptors, not in source code:
Technical Service

• P2P in ProActive: unstructured network for
sharing JVMs

20

Flow-Shop: Master-Slaves

Manager

Manager

Worker Worker Worker Worker Worker

Manager Manager

Manager Manager

21

Deployment Roles and Artifacts

Application
description

ex : ADL

Virtual Nodes descriptor
(deployment constraints)

Designer

code

writes

22

Virtual Nodes Descriptor

<virtual-nodes>
<virtual-node name=”managers”>

<technical-service
 type=”services.FaultTolerance”/>
<processor architecture=”x86”/>

</virtual-node>
<virtual-node name=”workers”/>

</virtual-nodes>

23

Packaged component

Integrator

provides

Application
description

ex : ADL

Virtual Nodes descriptor
(deployment constraints)

code

Deployment Roles and Artifacts

24

Packaged component

Available
physical

infrastructure

Deployer

writes

dynamically applicable

Technical
services

Deployment descriptor
(Virtual Nodes mapping)

Application
description

ex : ADL

Virtual Nodes descriptor
(deployment constraints) Deployment

considers considers

code

imposes

Deployment Roles and Artifacts

25

XML Deployment Descriptor

<ProActiveDescriptor>
<virtualNodeDefinition>

<virtualNode name=”managers” serviceRefid=”ft-manager”/>
<virtualNode name=”workers”/>

</virtualNodeDefinition>
...
<technicalServiceDefinitions>

<service id=”ft-manager” class=”services.FaultTolerance”>
<arg name=”protocol” value=”PML”/>
<arg name=”server” value=”rmi://hostname/FTServer”/>

</service>
</technicalServiceDefinitions>

</ProActiveDescriptor>

26

Agenda

• Problematic
• Constrained deployment

• Context
• The ProActive Grid Middleware

• Component based programming

• Deployment framework

• Solution
• Virtual Node descriptor

• Use case: Fault tolerance & Peer-to-Peer

• Conclusion
27

Conclusion

• Mechanism for specifying environmental
requirements:
• Defined by designer

• Specify minimun application deployment requirements
• Fulfilled by deployers

• Apply optimal configuration that fulfills requirement

• Work for component-based and object-based
applications

• Implementation Status:
• Technical Services implemented: Fault tolerance & load balancing

• Problem for combining Technical Services:
• Combining at the code source level

• Virtual node descriptor specified
• Constrained deployment with P2P deployment

28

P2P + Fault Tolerance + Load Balancing

With P2P: 5 clusters + INRIA lab desktops = 1007 CPUs
29

