Building a Virtualized Distributed Computing Infrastructure by

Harnessing Grid and Cloud Technologies

Alexandre di Costanzo, Marcos Dias de Assun¢do, and Rajkumar Buyya
Grid Computing and Distributed Systems Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Australia

Abstract

In this article, we present the realization of a system, termed as InterGrid, for
interconnecting distributed computing infrastructures by harnessing virtual
machines. The InterGrid aims to provide an execution environment for running
applications on top of the interconnected infrastructures. The system uses
virtual machines as the building blocks to construct execution environments that
span multiple computing sites. An execution environment is a network of virtual
machines created to fulfill the requirements of an application, thus running
isolated from other execution environments. These environments can be
extended to operate on Cloud infrastructure, such as Amazon EC2. The article
provides an abstract view of the proposed architecture and its implementation;
experiments show the scalability of an infrastructure managed by InterGrid and

how the system can benefit from using Cloud infrastructure.

Introduction

Over the last decade, the distributed computing area has been characterized by
the deployment of large-scale Grids such as EGEE [1] and Grid’5000 [2],. Such
Grids have provided the research community with an unprecedented number of
resources, which have been used for various scientific endeavors. Several efforts
have been made to enable interoperation between Grids by providing standard
components and adapters for secure job submissions, data transfers, and
information queries [3]. Despite these efforts, the heterogeneity of hardware and
software has contributed to increasing complexity of deploying applications on
these infrastructures. Moreover, recent advances in virtualization technologies
[4] have led to the emergence of commercial infrastructure providers, also

known as Cloud computing [5]. Handling the ever growing demands of

distributed applications while addressing heterogeneity, remains a challenging

task that can require resources from both Grids and clouds.

In previous work, we presented an architecture for resource sharing between
Grids [6] inspired by the peering agreements established between Internet
Service Providers (ISPs) in the Internet, through which ISPs agree to allow traffic
into one another's networks. This work presents the realization of the
architecture, which is termed as InterGrid and relies on InterGrid Gateways
(IGGs) that mediate access to resources of participating Grids. The InterGrid also
aims at tackling the heterogeneity of hardware and software within Grids. The
use of virtualization technology can ease the deployment of applications
spanning multiple Grids as it allows for resource control in a contained manner.
In this way, resources allocated by one Grid to another are used to deploy virtual
machines. Virtual machines also allow the use of resources from Cloud

computing providers.

We first introduce the concepts on virtualization and Cloud computing. Then, we

describe the InterGrid project (www.gridbus.org/intergrid), which aims to

provide an infrastructure for deploying applications on several computing sites,
or Grids, by using virtualization technologies. These applications run on
networks of virtual machines or execution environments created on top of the
physical infrastructure. Next, the system design and implementation are
presented. To illustrate the different interactions among the system components,
we describe the InterGrid at runtime. Finally, experimental results demonstrate
the system scalability and show how applications can combine resources from

two cloud provider sites.

Background and Context

Virtualization Technology and Infrastructure as a Service

The increasing ubiquity of Virtual Machine (VM) technologies has enabled the

creation of customized environments atop physical infrastructure and the

emergence of business models such as Cloud computing. The use of VMs brings

several benefits such as:

(i) Server consolidation, allowing workloads of several under-utilized

servers to be placed in fewer machines;

(ii) The ability to create VMs to run legacy code without interfering with

other applications' APIs;

(iii) Improved security through the creation of sandboxes for running

applications with questionable reliability; and

(iv) Performance isolation, thus allowing a provider to offer some

guarantees and better QoS to customers' applications.

Existing virtual-machine based resource management systems can manage a
cluster of computers within a site allowing the creation of virtual workspaces [7]
or virtual clusters [8]. They can bind resources to virtual clusters or workspaces
according to a user's demand. These systems commonly provide an interface
through which one can allocate VMs and configure them with the operating
system and software of choice. These resource managers, also named Virtual
Infrastructure Engines (VIE), allow the user to create customized virtual clusters

using shares of the physical machines available at the site.

As explained earlier, virtualization technology minimizes some security concerns
inherent to the sharing of resources among multiple computing sites. We utilize
virtualization software to realize the InterGrid architecture because existing
cluster resource managers relying on VMs can provide us with the building
blocks, such as the availability information, required for the creation of virtual
execution environments. In addition, relying on VMs eases the deployment of
execution environments on multiple computing sites; the user application can
have better control over the software installed on the resources allocated
without compromising the operation of the hosts' operating systems at the

computing sites.

Virtualization technologies have also facilitated the realization of Cloud

Computing services. Cloud computing includes three kinds of services accessible

by the Internet: Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS). This work considers only laaS. IaaS aims to
give provide computing resources or storage as a service to users. One of the
major players in Cloud computing is Amazon with its Elastic Compute Cloud
(EC2)1, which comprises several data centers located around the world. EC2
allows users to deploy VMs on demand on Amazon’s infrastructure and pay only

for the computing, storage and network resources they use.

Related Work

Existing work has shown how to enable virtual clusters that span multiple
physical computer clusters. A broker is responsible for managing a virtual
domain (ie. a virtual cluster) in VioCluster [1], and can borrow resources from
another broker. Brokers have borrowing and lending policies that define when
machines are requested from other brokers and when they are returned,

respectively.

Systems for virtualizing a physical infrastructure are also available. Montero et
al. [2] investigated the deployment of custom execution environments using
Open Nebula. They investigated the overhead of two distinct models for starting
virtual machines and adding them to an execution environment. Montero et al.
[3] also used GridWay to deploy virtual machines on a Globus Grid; jobs are
encapsulated as virtual machines. Montero et al. showed that the overhead of

starting a virtual machine is small for the application evaluated.

Several load-sharing mechanisms have been investigated in the distributed
systems realm. [osup et al. [4] proposed a matchmaking mechanism for enabling
resource sharing across computational Grids. Surana et al. [5] addressed the load

balancing in DHT-based P2P networks.

[1] P.Ruth, P. McGachey, and D.Xu. VioCluster: Virtualization for dynamic computational
domain. In IEEE International on Cluster Computing (Cluster 2005), pages 1-10, Burlington,
USA, September 2005. IEEE.

[2] R.S. Montero, E.Huedo, and I. M. Llorente. Dynamic deployment of custom execution

environments in Grids. In 2nd International Conference on Advanced Engineering Computing

1 http://aws.amazon.com/ec2/

[4]

[5]

and Applications in Sciences (ADVCOMP °08), pages 33-38, Valencia, Spain,
September/October 2008. IEEE Computer Society.

A. Rubio-Montero, E. Huedo, R. Montero, and I. Llorente. Management of virtual machines on
globus Grids using GridWay. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2007), pages 1-7, Long Beach, USA, March 2007. IEEE Computer Society.
A.Tosup, D.H.J. Epema, T. Tannenbaum, M. Farrellee, and M. Livny. Inter-operating Grids
through delegated matchmaking. In 2007 ACM/IEEE Conference on Supercomputing (SC
2007), pages 1-12, New York, USA, November 2007. ACM Press.

S.Surana, B.Godfrey, K.Lakshminarayanan, R.Karp, and I.Stoica. Load balancing in

dynamic structured peer-to-peer systems. Performance Evaluation, 63(3):217-240, 2006.

InterGrid Concepts

As this work presents the realization of the InterGrid, this section provides an

overview of the proposed architecture; details about the architecture are

available in previous work [6].

(c)

O InterGrid Gateway

—~— Peering Arrangement

Grid

Figure 1: Abstract view of the software layers of the InterGrid.

Figure 1 depicts the scenario considered by the InterGrid. The InterGrid aims to

provide a software system that allows the creation of execution environments

for various applications (a) on top of the physical infrastructure provided by the

participating Grids (c). The allocation of resources from multiple Grids to fulfill

the requirements of the execution environments is enabled by peering

arrangements established between gateways (b).

Cloud Provider

(Cloud APIs)

Peering
arrangement

Infrastructure
1 Engine (VIE)

User

application | 1 Request

for VMs

.......................................

Figure 2: Application deployment

A Grid has pre-defined peering arrangements with other Grids, managed by IGGs
and, through which they co-ordinate the use of resources of the InterGrid. An IGG
is aware of the terms of the peering with other Grids; selects suitable Grids able
to provide the required resources; and replies to requests from other IGGs.
Request redirection policies determine which peering Grid is selected to process
arequest and a price at which the processing is performed. An IGG is also able to
allocate resources from a Cloud provider. Figure 2 illustrates a scenario where
an IGG allocates resources from an organization’s local cluster for deploying
applications. Under peak demands, this IGG interacts with another that can

allocate resources from a cloud computing provider.

Although applications can have resource management mechanisms of their own,
we consider a case where the resources allocated by an application are used for
the creation of a Distributed Virtual Environment (DVE), which is a network of
virtual machines that runs isolated from other DVEs. Therefore, the allocation
and management of the acquired resources is performed on behalf of the

application by a component termed DVE Manager.

InterGrid Realization

The InterGrid gateway has been implemented in Java and its main components

are depicted in Figure 3.

InterGrid Gateway

\ J J

'Emulator Local Grid laaS)
Resources || Middleware || Provider

J

\

1 |
1 |
' i
] . .
] Management & Monitoring :
)| e JMX i
BEEID o
! o c r N\ N :
=2 ‘
I |8 i
] —
B i
! g 2 Scheduler m i
| 5 @ o > !
] 4 T - . oL !
] E § (Provisioning Policies & Peering) g :
! o
1 [e] Q |
: v s i
: L) U) nq_’ :
- \ :

. . |
1 Virtual Machine Manager :
|
' i
! [}
! |
! |
I
' i
! [}
! [}
|)

Figure 3: Main components of the InterGrid Gateway.

Communication Module: is responsible for message-passing. This module
receives messages from other entities and delivers them to the components
registered as listeners for those types of messages. It also allows components to
communicate with other entities in the system by providing the functionality to
send messages. Message-passing helps making gateways loosely coupled and
building more failure-tolerant communication protocols. In addition, sender and
receiver are de-coupled, making the whole system more resilient to traffic
bursts. All the functionalities of the module are handled by one central
component, the Post Office. When the Post Office receives an incoming message,
the message is associated to a thread and then forwarded to all listeners.
Threads are provided by a pool and if the pool is empty, messages are put in a
queue to wait for available threads. Listeners are message handlers, which deal
with messages. All listeners are notified when a new message arrives. Listeners

can individually decide to process the message. As messages are asynchronous

and sent/served in parallel, there is no order or delivery guaranties. It is the
responsibility of communicating components to handle those properties. For
instance, the scheduler uses unique message identifiers to manage request

negotiations.

Management and Monitoring: are performed via Java Management Extensions
(JMX). JMX is a standard API for management and monitoring of resources such
as Java applications. It also includes remote secure access, so a remote program
can interact with a running application for management purposes. The gateway
exports, via JMX, management operations such as configuring peering,
connecting/disconnecting to another gateway, shutdown the gateway, and
managing the virtual machine manager. All these operations are accessible via
JConsole, which is a graphical client provided by Java to connect to any
application using JMX. Moreover, we provide a command line interface that

interacts with the components via JMX.

Persistence: relies on a relational database for storing the information used by
the gateway. Information such as peering arrangements and templates for
virtual machines are persistently stored in the database. The database is
provided by the Apache Derby project?, which is a database implemented

entirely in Java.

Scheduler: the component here represented by the Scheduler comprises other
components, namely the resource provisioning policy, the peering directory,
request redirection and the enactment module. The scheduler interacts with the
Virtual Machine Manager in order to create, start or stop VMs to fulfill the
requirements of the scheduled requests. The scheduler also maintains the

availability information obtained by the VM Manager.

Virtual Machine Manager (VMM)

The Virtual Machine Manager (VMM) is the link between the gateway and the
resources. As described previously, the gateway does not share physical

resources directly, but relies on virtualization technology for abstracting them.

2 http://db.apache.org/derby

Hence, the actual resources used by the gateway are virtual machines. The VMM
relies on a Virtual Infrastructure Engine (VIE), for managing VMs on a set of
physical resources. Typically, VIEs are able to create and stop VMs on a physical
cluster. At present, we use Open Nebula3 as a VIE. Open Nebula allows the user to
submit VMs on physical machines using different kinds of hypervisors, such as
XEN% Xen is a hypervisor that allows running several operating systems on a
same host concurrently. A hypervisor gives privileged access to the hardware for
the guest operating systems. The host can control and limit the usage of certain
resources by the guests, such as memory or CPU. In addition, the VMM manages

the deployment of VMs on Grids and IaaS providers.

Virtual Machine template: Open Nebula's terminology is used to explain the
idea of templates for VMs. A template is analogous to a computer's configuration,

and contains a description for a virtual machine with the following information:
* Number of cores or processors to be assigned to the VM;
¢ The amount of memory required by the VM;
* The kernel used to boot the VM's operating system;
* The disk image containing the VM's file system; and
* Optionally, the price of using a VM over one hour.

That information is static, i.e. described once and reusable, and is provided by
the gateway administrator at the set-up time of the infrastructure. The
administrator can update, add, and delete templates at any time. In addition,
each gateway of the InterGrid network has to agree on the templates in order to

provide the same configuration on each site.

To deploy an instance of a given template, a descriptor is generated from the

information in the template. The descriptor contains the same fields as the

3 http://www.opennebula.org

4 http://www.xen.org/

template and additional information related to a specific VM instance. The

additional fields are:
* The disk image that contains the file system for the VM;
* The address of the physical machine that hosts the VM;
* The network configuration of the VM; and

* For deploying on an I[aaS provider, the required information on the

remote infrastructure, such as account information for the provider.

Before starting an instance, the network configuration and the address of the
host are given by the scheduler. The scheduler allocates a MAC address and/or
an IP address for that instance. The disk image field is specified by the template
but can be modified in the descriptor. To deploy several instances of the same
template in parallel, each instance uses a temporary copy of the disk image
specified by the template. Hence, the descriptor contains the path to the copied

disk image.

The fields of the descriptor can be different for deploying a VM on an laaS
provider. For example, the network information is not mandatory for using
Amazon as EC2 automatically assigns a public IP to the instances. In addition,
EC2 creates copies of the disk image seamlessly for running several instances in
parallel. Before running an instance, the disk image must be uploaded to Amazon

EC2 thus ensuring that the template has its corresponding disk image.

Virtual Machine Template Directory, the gateway works with a repository of
VM templates. That is, templates can be registered to the repository by the
gateway administrator. In this way, a user can request instances of VMs whose
template is registered on the gateway's repository. In addition, the gateway
administrator has to upload the images to Amazon if the gateway uses the cloud
as a resource provider. The user currently cannot submit her own template or

disk images to the gateway.

Virtual Machine Manager allows the gateway to submit and deploy VMs on a

physical infrastructure. It also interacts with a VIE to create and stop virtual

machines on a physical cluster. The implementation of the VMM is generic in
order to connect with different VIEs. We have developed VMMs for Open Nebula,
Amazon EC2, and Grid’5000. The connection with Open Nebula consists in using
the Java client’, to submit and stop VMs and in transforming our VM template to
the format recognized by Open Nebula. Open Nebula runs as a daemon service

on a master node, hence the VMM works as a remote user of Open Nebula.

We have also implemented a connector to deploy VMs on [aaS$ providers. For the
moment, only Amazon is supported. The connector is a wrapper for the
command line tool provided by Amazon. In addition, we have developed an
emulated VIE for testing and debugging purposes. The VMM for Grid’5000 is also
a wrapper for the command line tools (ie. OAR scheduler and Kadeploy
virtualization). The emulator provides a list of fake machines, where we can set
the number of cores for hosting VMs. Figure 4 shows the interaction between the

gateway, the template directory, and the VMM.

VMinstance vm = vmms.submit(vmTemplate, host) vminstance.shutdown()
Virtual Machine Manager Service ¥
y
Template Directory Public API
ublic

ubuntu; 1 core; 128 MB
fedora; 2 cores; 256 MB
opensuse; 1 core; 512MB

Interface

convert the generic template
to the virtual infrastructure engine
format

Emulator

Open Nebula
~ laaS OAR/Kadeploy

J

local physical infrastructure Grid'5000

Figure 4: Design and interactions of the Virtual Machine Manager.

5 http://opennebula.org/doku.php?id=ecosystem#java_api

Distributed Virtual Environment Manager (DVE-Manager)

A DVE Manager interacts with the IGG by making requests for VMs and querying
their status. The DVE Manager requests VMS from the gateway on behalf of the

user application it represents.

When the reservation starts, the DVE manager obtains the list of requested VMs
from the gateway. This list contains a tuple of public IP/private IP for each VM,
which the DVE Manager uses to access the VMs (with SSH tunnels). With EC2,
VMs have a public IP hence the DVE can access to the VMs directly without
tunnels. Then, the DVE Manager handles the deployment of the user's
application. We have evaluated the system with a bag-of-tasks application

without dependencies between tasks.

InterGrid Gateway at Runtime

Figure 5 shows the main interactions between InterGrid's components. The user
first requests VMs, the request is handle by a command line interface. The user
must specify which VM template she wants to use; and can also specify the
number of VM instances, the ready time for her reservation, the deadline, the
walltime, and the address of an alternative gateway. The client returns an
identifier for the submitted request from the gateway. Next, the user starts a DVE
manager with the returned identifier (or a list of identifiers) and its application
as parameters. The application is described by a text file where each line is one
task to execute on a remote VM. The task is indeed the command line to run with
SSH. The DVE Manager waits until the request has been scheduled or refused.
The local gateway tries to obtain resources from the underlying VIEs. When that
is not possible, the local gateway starts a negotiation with remote gateways in
order to fulfill the request. When a gateway can fulfill the request, ie. can
schedule the VMs, it sends the access information to connect to the assigned VMs
to the requester gateway. Once the requester gateway has collected all the VM
access information, this information is made available for the DVE Manager.
Finally, the DVE Manager configures the VMs, set-up SSH tunnels, and executes

the tasks on the VMs. In future work, we want to improve the description of

applications to allow file-transfer, dependencies between tasks, and VM

Gateway

3. Start the Int t
.. —_—

negotiation [ReIne

Gateway | —eeeeeeeee—————————| Gateway F----------N\-------- i
4. Find resources

configuration.

VM address

1.2.3.1
2. Forward 1.2.34
resource requests 1.2.3.6

o 1.2.3.7 ¥_

5. Send VM access

6. Get VM list

DVE
Manager

N Amazon EC2
7. Execute application tasks

[Ti]T2]T3]T4]T5] ...]

1. Submit an application
with resource requests

App.

User
Figure 5: The main interactions among the InterGrid components.

Under the peering policy considered in this work, each gateway’s scheduler uses
conservative backfilling to schedule the requests. When the scheduler cannot
start a request immediately using local resources, then a redirection algorithm

will:

1) Contact the remote gateways and ask for offers containing the earliest
start time at which they would be able to serve the request, if it were

redirected.

2) For each offer received, check whether the request start time proposed by
a peering gateway is than that given by local resources. That being the
case, the request is redirected; otherwise, the algorithm will check the

next offer.

3) If the request start time given by local resources is better than those
proposed by remote gateways, then the algorithm will schedule the

request locally.

This strategy has been previously proposed and evaluated in a smaller

environment including a local cluster and a cloud computing provider [9].

Experiments

This section describes two experiments. The first experiment evaluates the
performance of allocation decisions by measuring how the gateways manage
load via peering arrangements. The second experiment considers the
effectiveness of InterGrid for deploying a bag-of-tasks application on Cloud

providers.

Peering Arrangements

This experiment uses the French experimental Grid platform, Grid'5000, as
scenario and testbed. Grid'5000 comprises nine sites geographically distributed

in France, currently featuring 4792 cores.

Each gateway created in this experiment represents one site of Grid'5000; the
gateway runs on that site. To prevent gateways from interfering on real users of
Grid’5000, we use the emulated VMM, which instantiates fictitious VMs. The
number of emulated hosts is the number of real cores available on each site.

Figure 6 illustrates the Grid’5000 sites and the evaluated gateway configurations.

Sophia Orsay

2 gateways

Lillg
of cores: 618

Sophia Nancy

of/cores: 574
of cordsg @ @
' 3 gateways

Sophia v
of cores: 568 " 4 gateways

® Grid'5000 sites

Rennes Nancy
— 10 Gbps Link —— Peering

Figure 6: InterGrid testbed over Grid'5000.

The site's workloads are generated using Lublin and Feitelson's model [10], here
referred to as Lublin99. Lublin99 is configured to generate one-day-long
workloads; the maximum number of VMs required by generated requests is the
number of cores in the site. To generate different workloads, the mean number
of virtual machines required by a request (specified in log,) is set to
log, m — umed, where m is the maximum number of virtual machines allowed in
system. We randomly vary umed from 1.5 to 3.5. In addition, to simulate a burst
of request arrivals and heavy loads, thus stretching the system, we multiply the

inter-arrival time by 0.1.

2]
1.8 ‘
1.6 ‘
1.4
12 ‘ “ Load without peering
1 ‘ & “Load when peering
0.8 Load accepted
06 ‘ ‘; “Load redirected
0.4
‘ _ {
2 | Ml Wu

Nancy Rennes Orsay Sophia

Figure 7: Load characteristics under the four-gateway scenario.

Figure 7 shows the load characteristics under the four-gateway scenario. The
blue bars indicate the load of each site when they are not interconnected; the red
bars show the load when gateways redirect requests to one another; the green
bars correspond to the amount of load accepted by each gateway from other
gateways; and the purple bars represent the amount of load redirected. The
results show that the policy used by gateways balances the load across sites,
making the it tend to 1. Rennes, a site with heavy load, benefits from peering

with other gateways as a great share of its load is redirected to other sites.

Table 1 presents the job slowdown improvement caused by the interconnection
of gateways. Overall, the job slowdown is improved by the interconnection. Sites
with the heaviest loads (i.e. Rennes and Nancy) have better improvements. The

job slowdown of sites with lower loads is in fact worsened; however, this impact

is minimized as the number of gateways increases, which leads to the conclusion
that sites with light load suffer a smaller impact as the number of interconnected
gateways increases. The experiments demonstrate that peering is overall
beneficial to interconnected sites; benefits derive from load balancing and

overall job slowdown improvement.

Table 1: Job slowdown improvement under different gateway configurations.

Site 2 Gateways 3 Gateways 4 Gateways
Orsay -0.00006 N/A 0.00010
Nancy N/A 3.95780 4.30864
Rennes N/A 7.84217 12.82736
Sophia 0.20168 -6.12047 -3.12708

Deploying a Bag-of-Tasks Application

This experiment considers Evolutionary Multi-criterion Optimization (EMO)
[11], a bag-of-tasks application for solving optimization problems using a multi-
objective evolutionary algorithm. Evolutionary algorithms are a class of
population-based meta-heuristics exploiting the concept of population evolution
to find solutions to optimization problems. The optimal solution is found by
using an iterative process that evolves the collection of individuals in order to
improve the quality of the solution. Each task is an EMO process that explores a

different set of populations.

Table 2: Experimental results with 1 and 2 gateways using resources from Amazon EC2.

Number of VMs _1 G_ateway Each gatewazy g::::gf i’/s 2 of the VMs
(time in seconds) (time in seconds)
5 4,780 -
10 3,017 3,177
15 2,407 -
20 2,108 2,070

Figure 8 shows the testbed for running the experiments. We carry out one
experiment in two steps. First, we evaluate the execution time of EMO using a
single gateway. Then, we force InterGrid to provide resources from two

gateways. In this case, we limit the number of available cores for running VMs,

and the DVE Manager submits two requests. For 10 VMs, both gateways are
limited to nine cores and the DVE Manager sends two requests for five VMs each.
Next, for 20 VMs gateways set the limit to 20 cores and the DVE Manager
requests 10 VMs twice. The two gateways use resources from EC2. The requests
demand a small EC2 instance running Windows 2003 Server. Table 2 reports the
results of both experiments. The experiments show that the execution time of
the bag-of-tasks application does not suffer important performance degradations

with one or two gateways.

USA USA
site 1 site n

Getting Virtual Machine from\the Cloud

Figure 8: Testbed used to run EMO on a Cloud Computing provider.

Conclusion

This article presented a system, the InterGrid, for deploying applications on
multiple-site execution environments. The system relies on gateways inspired by
the peering agreements between ISPs. We described the virtualization
technology used by InterGrid to abstract physical infrastructures. Then, we

showed the motivation and the realization of the InterGrid system.

As the management of the local resource is based on virtual infrastructure
engines, we detail how the gateway interacts with these engines to control
virtual machines. In addition, the InterGrid can instantiate VMs on Amazon EC2

and deploy system images on Grids, such as Grid’5000.

Experimental results emulating a real Grid showed the performance of allocation

decisions made by gateways. We also presented a runtime scenario for deploying

a parallel evolutionary algorithm for solving optimization problems. With that
application, we validated the realization of the InterGrid by comparing the
runtime execution of the application when obtaining resources from one
gateway at a time and from two gateways, which were deploying VMs on

Amazon EC2.

In future work, we plan to improve the VM template directory to allow users to
submit their own VMs and to synchronize the available VMs between gateways.
In addition, the security aspects have not been addressed in this work because
they are handled at the operating system and network levels, it would be

interesting to address those aspects at the InterGrid level.
Acknowledgments

We thank Mohsen Amini for helping in the system implementation. This work is
supported by research grants from the Australian Research Council and
Australian Department of Innovation, Industry, Science and Research. Marcos'
PhD research is partially supported by NICTA. Some experiments were carried
out using the Grid'5000 experimental testbed, being developed under the INRIA
ALADDIN development action with support from CNRS, RENATER, several

universities, and other funding bodies (see https://www.grid5000.fr).

References

[1] Enabling Grids for E-sciencE (EGEE) project, http://public.eu-egee.org
(2005).

[2] F.Cappello, E. Caron, M. Dayde, F. Desprez, Y. Jegou, P. Primet, E. Jeannot, S.
Lanteri, J. Leduc, N. Melab, G. Mornet, R. Namyst, B. Quetier, and O. Richard.
“Grid’5000: a large scale and highly reconfigurable grid experimental
testbed”. In 6th [EEE/ACM International Workshop on Grid Computing,
2005.

[3] Grid Interoperability Now Community Group (GIN-CG),
http://forge.ogf.org/sf/projects/gin (2006).

[4] X.Zhu, D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser,
D.Gmach, R.Gardner, etal. 1000 Islands: Integrated Capacity and
Workload Management for the Next Generation Data Center. In Autonomic
Computing, 2008. ICAC’08. International Conference on, pages 172-181,
2008.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A
berkeley view of cloud computing. Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley, Feb 2009.

M. D. de Assuncdo, R. Buyya, S. Venugopal, InterGrid: A case for
internetworking islands of Grids, Concurrency and Computation: Practice
and Experience (CCPE) 20 (8) (2008) 997-1024.

K. Keahey, 1. Foster, T. Freeman, X. Zhang, Virtual workspaces: Achieving
quality of service and quality of life in the Grids, Scientific Programming 13
(4) (2006) 265-275.

J. S. Chase, D. E. Irwin, L. E. Grit,]. D. Moore, S. E. Sprenkle, Dynamic virtual
clusters in a Grid site manager, in: 12th IEEE International Symposium on
High Performance Distributed Computing (HPDC 2003), IEEE Computer
Society, Washington, DC, USA, 2003, p. 90.

M. D. de Assuncao, A. di Costanzo and R. Buyya. Evaluating the Cost-Benefit
of Using Cloud Computing to Extend the Capacity of Clusters, In
Proceedings of the International Symposium on High Performance
Distributed Computing (HPDC 2009), Munich, Germany, 11-13 Jun. 2009.

U. Lublin and D. G. Feitelson. The workload on parallel supercomputers:
Modeling the characteristics of rigid jobs. Journal of Parallel and
Distributed Computing, 63 (11) (2008) 1105-1122.

M. Kirley, and R. Stewart, “Multiobjective evolutionary algorithms on
complex networks”, in Proc. of the Fourth International Conference on
Evolutionary Multi-Criterion Optimization, Lecture Notes Computer
Science 4403, Springer Berlin, Heidelberg, 2007, pp. 81-95.

Alexandre di Costanzo is a research fellow at the University of Melbourne. His

research interests are distributed computing and especially grid computing. Di

Costanzo has a PhD in computer science from the University of Nice Sophia

Antipolis, France. Contact him at adc@csse.unimelb.edu.au.

Marcos Dias de Assuncao is a PhD candidate at the University of Melbourne,

Australia. His PhD thesis is on peering and resource allocation across Grids. The

current topics of his interest include Grid scheduling, virtual machines, and

network virtualization. Contact him at marcosd@csse.unimelb.edu.au

Rajkumar Buyya is an Associate Professor and Reader of Computer Science and

Software Engineering; and Director of the Grid Computing and Distributed

Systems (GRIDS) Laboratory at the University of Melbourne, Australia. He also

serves as CEO of Manjrasoft, Australia. Contact him at raj@csse.unimelb.edu.au.

