
ProActive: an Integrated platform for
programming and running applications on Grids

and P2P systems

Denis Caromel, Christian Delbé, Alexandre di Costanzo, and Mario Leyton

INRIA Sophia-Antipolis, CNRS, I3S, UNSA. 2004, Route des Lucioles, BP 93,
F-06902 Sophia-Antipolis Cedex, France.

First.Last@sophia.inria.fr

Abstract. We propose a grid programming approach using the ProAc-
tive middleware. The proposed strategy addresses several grid concerns,
which we have classified into three categories. I. Grid Infrastructure
which handles the resource acquisition and creation using deployment
descriptors and Peer-to-Peer. II. Grid Technical Services which can pro-
vide non-functional transparent services like: fault tolerance, load balanc-
ing, and file transfer. III. Grid Higher Level programming with: group
communication and hierarchical components. We have validated our ap-
proach with several grid programming experiences running applications
on heterogeneous Grid resource using more than 1000 CPUs.

1 Introduction

Programming for the Grid raises new challenge for parallel and distributed pro-
gramming. Mainly characterized by resource heterogeneousness, location disper-
sity, and high volatility (among others); the Grid requires the adoption of new
programming paradigms that address these issues.

Based on our research, in this article we propose an approach for Grid pro-
gramming using the ProActive middleware. ProActive was originally created as
an implementation of Active Object programming model, and has developed
into a multifeatured middleware for programming and deploying distributed ap-
plications on the Grid. ProActive is still evolving; and currently represents the
manifestation of our studies.

Released under the LGPL license ProActive is a Java library for parallel,
distributed, and concurrent computing, also featuring mobility and security in a
uniform framework. With a reduced set of simple primitives, ProActive provides
a comprehensive API allowing to simplify the programming of applications that
are distributed on Local Area Networks (LAN), on clusters, or on Internet Grids.

The Grid Infrastructure based on resource creation and acquisition through
deployment descriptors, provides a level of abstraction that allows removing
from the application source code any reference of infrastructure (hardware, soft-
ware, hosts, protocol, and hardware). Applying several Grid Technical Services
non-functional and transparent aspects such as: fault tolerance, load balancing



and file transfer can be transparently used to overcome the burden of program-
ming distributed applications. ProActive also provides Higher Level Program-
ming strategies that provide a further abstraction for grid programming using
paradigms like: typed group communication and hierarchical components.

This document is organized as follows. In section 2 we give a general back-
ground on the active object programming model and ProActive, then in section
3 we discuss how the Grid Infrastructure can be built using Descriptors and
Peer-to-Peer. Once we have established the Grid Infrastructure, in section 4 we
discuss the different services required for Grid programming. We then proceed
to section 5 where we show Higher Level Grid programming mechanisms. Then
we show in section 6 some Grid programming experiences using our proposed
approach, and finally in section 7 we conclude and show our current perspectives
on Grid programming.

2 Active Object Programming with ProActive

The ProActive middleware is a 100% Java library, which aims at achieving seam-
less programming for concurrent, parallel, distributed, and mobile computing. It
does not require any modification of the standard Java execution environment,
nor does it make use of a special compiler, pre-processor, or modified virtual
machine.

The ProActive core is a uniform active object (AO) programming model. As
shown in Figure 1, AO are remotely accessible via method invocation. Each AO
has its own thread of control and is granted the ability to decide in which order
to serve the incoming method calls, automatically stored in a queue of pending
requests. Method calls on AO are asynchronous with automatic synchronization.
This is achieved using automatic future objects as a result of remote methods
calls, and synchronization is handled by a mechanism known as wait-by-necessity
[11]. To move any AO from any Java Virtual Machine (JVM) to any other, a mi-
gration mechanism is provided. An AO with its pending requests (method calls),
futures, and passive (mandatory non-shared) objects can migrate from JVM to
JVM through the migrateTo(...) primitive. The migration can be initiated from
outside the AO, but it is the responsibility of the AO to execute the migration,
this is known as weak migration. Automatic and transparent forwarding of re-
quests and replies provide location transparency, as remote references toward
active mobile objects remain valid.

ProActive uses by default the RMI Java standard library as a portable com-
munication layer, supporting the following communication protocols: RMI, HTTP,
Jini, RMI/SSH, and Ibis [25].

Another Grid communication mechanism is the typed group communication
model [2]. Group communication allows triggering method calls on a distributed
group of active objects with compatible type, dynamically generating a group
of results. It has been shown in [2] that this group communication mechanism,
plus a few synchronization operations (WaitAll, WaitOne, etc.), provides quite
similar patterns for collective operations such as those available in e.g. MPI, but



3⌧ A future object
is created and returned

1⌧ Object A performs
a call to method foo

2⌧ The request for foo
is appended to the queue

5⌧ The body updates the future
with the result of the execution of foo

6⌧ Object A can use the result
throught the future object

4⌧ The thread of the body
executes method foo on object B

Object B

Proxy Body

Object A

Future

Result

Local node Remote node

Object BObject A

Fig. 1. Execution of a remote method call.

in a language centric approach [3]. The typed group communication model is
detailed in section 5.1.

ProActive also provides other higher-level abstractions for grid programming,
implementing the hierarchical Fractal component model[7].

Graphical visualization and monitoring of any ongoing ProActive applica-
tions is possible through IC2D (Interactive Control and Debugging of Distribu-
tion) tool. In particular, IC2D enables to migrate executing tasks by a graphical
drag-and-drop.

3 Grid Infrastructure Programming

3.1 Descriptor-based Deployment of Grid Applications

The deployment of distributed applications is commonly done manually through
the use of remote shells for launching the various virtual machines or daemons on
remote computers and clusters. Deployment on the grid increases the complexity
of application because of the heterogeneousness of resources, thus making the
deploying task central and harder to perform.

ProActive succeeds at providing a generic approach for deployment. Using
grid descriptors, infrastructure details can be removed from the user application
in a uniform and abstract way [5]. References to hosts, protocols and other
infrastructure details are removed from the application code, and specified in
the descriptors using XML.

The grid application is thus contracted with the descriptor through a Vir-
tualNode. VirtualNodes are abstractions for the location of resources, and cor-
respond to the actual references in the application code. They have a unique
identifier, and can be mapped on to one or several Java Virtual Machines (JVM).



These JVMs can be created or acquired (on local or remote sites), through the
mapping of processes. A process holds the protocol specific information. The
result of mapping a VirtualNode on the resources corresponds to one or several
ProActive Nodes.

Effectively, a user can change the mapping of the VirtualNode → JVM →
Process to deploy on different sites, without modifying a single line of code in
the application.

Figure 2 shows a simple descriptor example. The VirtualNode named Exam-
ple is mapped on to a JVM called JVMExample, which in turn is mapped on
to a process called sshProcess. The sshProcess will perform an ssh connection to
the host example.host and insantiate a JVM using the defined jvmProcess.

The XML Deployment Descriptors currently provide interfaces with various
protocols: rsh, ssh, LSF, PBS, SGE, Globus, Jini, RMIregistry, EGEE gLite, Unicore,

Nordugrid, etc., which enable to effectively deploy grid applications.
In addition, descriptors provide support for other infrastructure services, such

as P2P, File Transfer and others. In particular, the File Transfer support allows
transferring of files, such as data, libraries, Java Virtual Machines, code, ProAc-
tive runtime, etc., to remote locations and retrieve of files from remote nodes.
In section 4.3 we discuss File Transfer in further detail.

3.2 A self-organized and flexible Peer-to-Peer Infrastructure

Existing models and infrastructures for Peer-to-Peer (P2P) computing are rather
limited: only targetting independent worker tasks, usually without communica-
tions between tasks. Therefore, we propose a P2P infrastructure of computa-
tional nodes for distributed communicant applications. The infrastructure pro-
vides large scale grids for computational intensive applications; such Grids pro-
vide a mix of clusters and desktop machines.

The main goal of the P2P infrastructure is to provide a new way to build
and use Grids. The infrastructure allows applications to transparently and eas-
ily obtain computational resources from Grids composed of both clusters and
desktop machines. The application deployment burden is eased by a seamless
link between applications and the infrastructure. This link allows: applications
to communicate, and to manage the resources volatility.

The proposed P2P infrastructure has three main characteristics. First, the
infrastructure is not centralized and completely self-organized. Second, it is flex-
ible, thanks to parameters for adapting the infrastructure to the location where
it is deployed. Last, the infrastructure is portable since it is built on top of Java
Virtual Machines, which run on cluster nodes and on desktop machines. Thus,
the infrastructure contributes to ProActive, providing a new way for: deploying
applications and acquiring already running JVMs (instead of starting new ones).

For us P2P is defined as “Pure Peer-to-Peer Network” [19]. This definition
focus on sharing, decentralization, instability, and fault tolerance.

The proposed P2P infrastructure is an unstructured P2P network, such as
Gnutella [15]. Therefore, the infrastructure resource query mechanism is similar
to the Gnutella communication system, which is based on the Breadth-First



<ProActiveDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema
−instance" xsi:noNamespaceSchemaLocation="DescriptorSchema.
xsd">

<componentDefinition>
<virtualNodesDefinition>
<virtualNode name="Example"/>
</virtualNodesDefinition>
<componentDefinition/>
<deployment>
<mapping>
<map virtualNode="Example">
<jvmSet>

<vmName value="JvmExample"/>
</jvmSet>

</map>
</mapping>
<jvms>
<jvm name="JvmExample">
<creation> <processReference refid="sshProcess"/> </creation>
</jvm>
</jvms>
</deployment>
<infrastructure>
<processes>
<processDefinition id="sshProcess">
<processReference refid="jvmProcess"/>
<sshProcess class="org.objectweb.proactive.core.process.

SSHProcess"
hostname="example.host" username="smith"/>

</processDefinition>
<processDefinition id="jvmProcess">
<jvmProcess class="org.objectweb.proactive.core.process.

JVMNodeProcess"/>
</processDefinition>
</processes>
</infrastructure>
</ProActiveDescriptor>

Fig. 2. XML Deployment Descriptor Example



Search algorithm (BFS). The system is message-based with application-level
routing. Messages are forwarded to each acquaintance, and if the message has
already been received (looped), then it is dropped. The number of hops that a
message can take is limited with a Time-To-Live (TTL) parameter 1.

As previously mentioned, the main problem of P2P infrastructures is the
peers high volatility, since peers are usually desktop machines and clusters nodes
available for a short time. Therefore, the proposed infrastructure aims at main-
taining the network alive, while available peers exist; this is called self-organizing.
When it is impossible (or undesired) to have external entities, such as centralized
servers, which maintain peer databases, all peers should be capable of staying
in the infrastructure by their own means. A widely used strategy for achieving
self-organization consists in maintaining, for each peer, a list of acquaintances.

At the beginning, when a fresh peer joins the network, it only knows ac-
quaintances from a list of potential network members, such as with super-peer
architectures. The initially known peers will not be permanently available, and
therefore peers have to update their list of acquaintances to stay connected in
the infrastructure.

Therefore, the proposed infrastructure uses a specific parameter called Num-
ber of Acquaintances (NOA): the minimum number of known acquaintances for
each peer. Peers update their acquaintance list every Time to Update (TTU)2,
checking their own acquaintance list to remove unavailable peers, i.e. they send
heartbeat messages to them. When the number in the list is less than NOA,
a peer will try to discover new acquaintances. To discover new acquaintances,
peers send exploring messages through the infrastructure. Note that each peer
can have its own parameter values, and that they can be dynamically updated.

Using the proposed P2P infrastructure we have conducted several Grid pro-
gramming experiences. Some of which are detailed in section 6.1.

4 Grid Programming: Technical Services

In this section we present Technical Services, which are non-functional aspects
of applications. Those services can be added to the application functional code
at the deployment time. Services configurations are based on application needs,
potentially taking into account the underlying characteristics of the infrastruc-
ture.

4.1 Fault-Tolerance

As the use of desktop grids goes mainstream, the need for adapted fault-tolerance
mechanisms increases. Indeed, the probability of failure is dramatically high for
such systems: a large number of resources imply a high probability of failure

1 The TTL is one of the parameters configurable by the administrator, which has
deployed the P2P infrastructure.

2 NOA and TTU are also both configurable.



of one of those resources. Moreover, public Internet resources are by nature
unreliable.

Rollback-recovery [13] is one solution to achieve fault-tolerance: the state of
the application is regularly saved and stored on a stable storage. If a failure
occurs, a previously recorded state is used to recover the application. Two main
approaches can be distinguished : the checkpoint-based [16] approach, relying on
recording the state of the processes, and the log-based [1] approach, relying on
logging and replaying inter-process messages.

Fault-tolerance in ProActive is achieved by rollback-recovery; two different
mechanisms are available. The first is a Communication-Induced Checkpoint-
ing protocol (CIC): each active object has to checkpoint at least every TTC
(Time To Checkpoint) seconds. Those checkpoints are synchronized using the
application messages to create a consistent global state of the application [12].
If a failure occurs, every active object, even the non faulty, must restart from
its latest checkpoint. The second mechanism is a Pessimistic Message Logging
protocol (PML): the difference with the CIC approach is that there is no need
for global synchronization, because all the messages delivered to an active ob-
ject are logged on a stable storage. Each checkpoint is independent: if a failure
occurs, only the faulty process has to recover from its latest checkpoint.

Basically, we can compare those two approaches regarding two metrics: the
failure-free overhead, i.e. the additional execution time induced by the Fault-
Tolerance mechanism without failure, and the recovery time, i.e. the additional
execution time induced by a failure during the execution. The failure-free over-
head induced by the CIC protocol is usually low [6], as the synchronization
between active objects relies only on the messages sent by the application. Of
course, this overhead depends on the TTC value, set by the programmer; the
TTC value depends mainly on the assessed frequency of failures. A small TTC
value leads to very frequent global state creation and thus to a small rollback in
the execution in case of failure. But a small TTC value leads also to a higher fail-
ure free overhead. The counterpart is that the recovery time could be high since
all the application must restart after the failure of one or more active object.

As for CIC protocol, the TTC value impacts on the global failure-free over-
head, but the overhead is more linked to the communication rate of the applica-
tion. Regarding the CIC protocol, the PML protocol induces a higher overhead
on failure-free execution. But the recovery time is lower as a single failure does
not involve all the system: only the faulty has to recover.

Choosing one of those two approaches highly depends on the characteristics
of the application and of the underlying hardware. We thus aim to provide a
fault-tolerance mechanism that allows to choose the best approach at deployment
time: the programmer can specify in the deployment descriptor if the application
must be started with fault-tolerance, and can select the best mechanism and
configuration regarding the hardware environment. In particular, there is no
need to alter the original source code of an application to make it fault-tolerant:
all the fault-tolerance concerns are handled transparently at the middleware level.



4.2 Load balancing of Active Objects

An important feature of Grid systems, is the ability to redistribute tasks among
its processors. This requires a redistribution policy to gain in productivity by
dispatching the tasks in such a way that the resources are used efficiently, i.e.
minimizing the average idle time of the processors and improving applications
performance.

Load balancing is the process of distributing parallel application tasks on a
set of processors while improving the performance and reducing the application
response time. The decisions of when, where and which tasks have to be trans-
ferred are critical; and therefore the load information has to be accurate and
up-to-date [17]. When these decisions are taken at runtime, this process is called
dynamic load balancing.

Dynamic load balancing requires the collection of information such as: under-
loaded and overloaded Grid nodes. For communication-intensive applications3,
in [10] we experimentally showed that Distributed oriented policies (opposed to
Centralized) have the best performance (using response time and bandwith as
metrics). And, that sharing underloaded nodes information, Eager policies (op-
posed to Lazy), is the best decision. Therefore, for this kind of applications,
we concluded that the best strategy is the Eager Distributed policy: overloaded
nodes trigger the balancing using previously collected information of underloaded
nodes.

For load balancing in P2P networks, we presented [9] an active object load
balancing algorithm based on well known algorithms [21] and adapted for an het-
erogeneous4 P2P infrastructure. This algorithm is a dynamic, scalable, and fully
distributed load balancer, which reacts to load perturbations on the processor
and the system.

Using these experiments, we have set up, and continue to improve, a load
balancing mechanism for programming on the Grid using ProActive.

4.3 File Transfer

File transfer in the Grid can be addressed from two different perspectives: in-
frastructure and programming.

From the infrastructure point of view, the Grid must provide tools for trans-
ferring/accessing files. Given the heterogeneous nature of the Grid, the file trans-
fer tools will be miscellaneous: scp, rcp, gridftp, unicore[24], nordugrid-arc[18],
etc. Providing a general abstraction for all the file transfer tools diversity is
addressed in ProActive through the Descriptor Deployment model (see section
3.1). This allows transferring files at deployment time to the remote Grid nodes.
For example, to provide the input for the application. Later on, at the end of the
application, the gathering of remote files from the remote nodes can take place.
For example, gathering the result of the application.

3 Parallel applications which transfer a large amount of data among processors.
4 Heterogeneous in processing capacity.



From the programming perspective, a uniform methodology is required. Dif-
ferent approaches have been used to address this issue, for example GAT trans-
parent remote access [20]. From the active object Grid Programing model (see
section 2), the ProActive solution [4] is to provide asynchronous file transfer with
future objects through a programming API:

//Sends a file to Node n
static public void pushFile(Node n, File source, File

destination);
//Gets a file from Node n
static public File pullFile(Node n, File source, File

destination);

With the use of asynchronism and futures, a file transfer can take place in
parallel with the user application. The wait-by-necessity mechanism will auto-
matically synchronize the threads only if the file needs to be accessed while the
transfer is still taking place.

5 Higher Level Grid Programming

5.1 Typed Group Communications

Group communication is an important feature for high-performance and Grid
computing, for which MPI is generally the only available coordination model [3].

The typed group communication mechanism [2] is built upon the ProActive
elementary mechanism for asynchronous remote method invocation with auto-
matic futures. The group mechanism must be thought of as a replication of more
than one (say N) ProActive remote method invocations towards N active objects.
Of course, the aim is to incorporate some optimizations into the group mecha-
nism implementation, in such a way as to achieve better performances than a
sequential achievement of N individual ProActive remote method calls. In this
way, the mechanism is a generalization of the remote method call mechanism of
ProActive.

The availability of such a group communication mechanism, simplifies the
programming of applications with similar activities running in parallel. Indeed,
from the programming point of view, using a group of active objects of the same
type, subsequently called a typed group, takes exactly the same form as using
only one active object of this type. This is possible due to the fact that the
ProActive library is built upon reification techniques.

Figure 3 shows an example using typed group communication.

5.2 Distributed Hierarchical Components

Components are attracting research for developing grid applications. In [7] we
proposed a parallel and distributed component framework for building Grid ap-
plications, adapted to the hierarchical, distributed and heterogeneous nature of



Object[][] constructorArray = {{...},{...},...};
Node[] nodes = {...,...,... };
A ag1 = (A) ProActiveGroup.newActiveGroup("A", constructorArray,

nodes);
...
ag1.foo(...); // A group communication

// A method call on a typed group
V vg = ag1.bar();
// To wait and capture the first returned member of vg
V v = (V) ProActiveGroup.waitAndGetOne(vg);
// To wait all the members of vg are arrived
ProActiveGroup.waitAll(vg);

Fig. 3. Typed Group Communications

the Grid. We extended ProActive implementing a hierarchical and dynamic com-
ponent model named Fractal [8, 14]. This implementation aims at simplifying the
composition, deployment, re-usability and efficiency of grid applications.

Using components, a complex Grid software can be composed of services
(or sub-components). Each component has a well defined interface for accessing
the service that it provides, and a well defined interface for requiring services5.
Also, a component can be composed hierarchically of other sub components. The
process of linking the component’s interfaces is called binding.

From the outside, an application is viewed as a component providing a ser-
vice. Once deployed and running on the grid, if the application or one of its
sub components needs to be replaced or migrated (for example, because of load
balancing), this can be achieved by replacing or migrating hierarchically the
component.

Components are thus a very promising paradigm for Grid programming.

6 Grid Experiences

6.1 Experimentations on a large scale grid, mixing Clusters and
Desktop Machines

In order to run experiments, the INRIA Sophia Desktop Grid has been deployed
on the 250 desktop machines of the INRIA Sophia Antipolis laboratory; this grid
is now a permanent grid managed by the P2P infrastructure (see section 3.2).
All these desktop machines have heterogeneous operating systems (GNU/Linux
and Windows) and CPU generations (Intel Pentium 2 to Pentium 4).

To avoid disturbing desktop users, a daemon was developed to start a JVM
with a P2P Service at fixed times. The 250 desktop machines by default work
5 As a matter of fact, a component has more interfaces like non functional interfaces,

which are not denoted here for simplicity.



during night (from 8:00pm to 8:00am) and during weekend (from Friday 8:00pm
to Monday 8:00am), this group is called INRIA-ALL, and about 40 of those
machines always work, this sub-group is called INRIA-2424.

In addition, of that desktop grid, we have access to a large scale national
french wide infrastructure for grid research, Grid’5000 (Grid5K). Grid5K project
aims at building a highly reconfigurable, controllable and monitorable experi-
mental grid platform gathering 9 sites geographically distributed in France, and
currently featuring a total of 1700 CPUs.

The Figure 4 shows the grid used for our experimentations, this grid is a
mix of INRIA Sophia Desktop Grid and Grid5K clusters. The left of the figure
shows the INRIA Sophia Desktop Grid wherein INRIA-2424 peers are used as
registries, all registries use themselves as registries; and at fixed moments the
rest of INRIA-ALL machines join the P2P infrastructure by contacting those
registries. In addition, the right part of the figure shows the Grid5K platform.

Grid'5000 - Grid PlatformINRIA Sophia Antipolis - Desktop Machines Network

Cluster of Lyon

Cluster of Sophia

Cluster of Orsay

Desktop Machines - INRIA-2424

Desktop Machines - INRIA-All

Cluster Frontals

Clusters Nodes

Peers in acquainting JVMs deployed by an XML descriptor

Fig. 4. Environment of experimentations: Grid of desktop machines and of clusters.

NQueens: Computation Record With the INRIA Sophia Desktop Grid we
managed, using the previously detailed P2P infrastructure, to be the first[22] to
solve the NQueens counting problem for a 25× 25 chessboard. The experimen-
tation took six months at solving this problem instance.

The NQueens counting problem consists in placing n non attacking queens
on a n × n chessboard (no two queens are on the same vertical, diagonal, or
horizontal line). The problem’s complexity comes from counting all the satisfying
solution for a given n. The approach used to solve the NQueens problem, was to
divide the global set of permutations into a set of independent tasks. A master-



slave model was applied to distribute these tasks to the workers, which were
dynamically deployed on the INRIA Sophia Desktop Grid.

The results of the NQueens experimentation are shown in Table 1.

Table 1. NQueens experimentation summary.

n of NQueens n=25

Total of Solution Found 2, 207, 893, 435, 808, 352

Total of Tasks 12, 125, 199

Total of Computation Time 4444 hours (≈ 185 days)

Average Time of One Task Computation ≈ 2 minutes and 18 seconds

One CPU Cumulated Time 464344 hours (≈ 53 years)

Total of Desktop Machines 250 (up to 220 working together)

The total number of solution was confirmed by Pr. Yuh-Pyng Shieh from
the National Taiwan University. Using a different algorithm he found the same
number of solutions [22] to place 25 queens on a 25× 25 chessboard.

NQueens: Large Scale Grid To experiment on a large scale grid, we took the
same NQueens application, and run it on a grid. This grid is a mix of machines
from INRIA Desktop Grid (INRIA-2424 and INRIA-All), and from clusters of
Grid5K. Using these resources, we managed to deploy on 1007 CPUs. We chose
the NQueen problem instance: n = 22.

Figure 5 shows computation time for the problem instance deployed on dif-
ferent number of CPUs. The speedup of the application depends on the ratio
of desktop and cluster machines used. Note that, during the experimentation
the availability of desktop machines varied affecting the ratio and therefore the
speedup.

Flow-Shop: Communicant Application The Flow-Shop problem aims to
find a schedule of a set of jobs on a set of machines for minimizing the total
execution time. We try to evaluate our P2P infrastructure using a Flow-Shop
which requires communication.

The algorithm used to solve the Flow-Shop problem is not optimal, but pro-
vides some good characteristics for testing the P2P infrastructure. Firstly, we
divide the solution tree of a given problem instance in a number of tasks. For
finding the best solutions, we give the tasks to the workers. Our approach is
based on a master-slave model. Workers share the best current solution, when
a better solutions is found, the worker that finds it broadcasts it to all workers.
Using this information workers can branch and bound the search tree.

Table 2 shows results from Flow-Shop computations with an instance of 17
jobs/ 17 machines. An analysis of the Table 2 shows that computation time
decreases when the number of used CPUs increases. Note, there are two peaks,



Fig. 5. NQueens with n = 22 benchmark results.

which can be explained because desktop machines are not constantly available.
Machines leave and join the infrastructure, since they are desktop resources.

Thanks to the P2P infrastructure we successfully managed to deploy a com-
municant application on different sites which provided about 350 CPUs. Those
CPUs were composed of heterogeneous architectures, using desktop machines
and clusters.

Table 2. Flow-Shop experimentation results with an instance of 17 jobs and 17 ma-
chines.

Max. CPUs Computation Time Cumulated Time

80 125.55 minutes 9, 603 minutes (≈ 160 hours)

201 61.31 minutes 10, 676 minutes (≈ 178 hours)

220 86.19 minutes 14, 396 minutes (≈ 240 hours)

313 56.03 minutes 13, 257 minutes (≈ 220 hours)

321 83.73 minutes 14, 628 minutes (≈ 243 hours)

346 59.14 minutes 15, 036 minutes (≈ 250 hours)

6.2 2nd Grid Plugtests

During the 10th-14th of October 2005 the 2nd Grid Plugtests [23] was held.
Organized by ETSI and INRIA, the objectives were: to test Grid interoperability,
and to learn, through the user experience and open discussion, about the future
features needed for Grid middlewares.



Two Grid challenges took place with 8 participating teams. A grid was setup
using the ProActive middleware, which inter-operated with several other mid-
dlewares and protocols. This grid was deployed on 13 different countries, in
more than 40 sites, gathering 2700 processors with a computing power of ap-
proximately 450 GFlops6. Given the heterogeneousness of the sites, each one
had to be configured and fine tuned. This involved figuring out the Architec-
ture (x86, ia64, x86-64, PPC, AIX, SGIIrix, and Sparc) and Operating System
(Linux, MacOS, AIX, SGIIrix, and Solaris), installing an adequate Java Vir-
tual Machine (Sun, IBM, Apple, and AIX), figuring out the network/firewall
configuration (Firewalls, and NAT), Job Scheduler (GLite, Globus, LSF, Nor-
duGrid ARC, OAR, PBS, PRUN, SGE, SSH, and Unicore). The deployment
and interoperability between all resources/sites was achieved using ProActive.

The Grid deployment was thus made very simple and transparent for the
contestants, who had all the architecture details hidden by the ProActive layer.
The contestants had to implement their own solutions for the challenge problems.
All teams used the ProActive grid programming library.

The criterion for deciding the winners were based on: a) Greatest number of
solutions found. b) Biggest number of processors used. c) Fastest algorithm.

Each team was allocated one hour of exclusive access to the Grid for comput-
ing. The first challenge was the NQueens counting problem. The Brazilian team
from LSC/UFSM got ahead of the other participants. They managed to com-
pute 2 202 billions of solutions, deployed on 1106 nodes, and solved the NQueens
instance n = 21 in 13 minutes.

The second challenge was the Flow-Shop scheduling problem. The first place
was awarded to the Polish Team PUTaT3AM. They computed all exact cases
for FlowShop challenge for 20 jobs and 20 machines. Only this team was able to
do this in less than one hour, and using 370 CPUs.

The Grid Plugtests gave us the opportunity to develop new and interesting
features, while testing the middleware at a new level of complexity. The results
of the NQueens and Flow-Shop challenges showed that programming in the
heterogeneous Grid can be achieved using ProActive.

7 Conclusions

Using the proposed approach, which targets Grid programming at three differ-
ent levels: Grid Infrastructure, Grid Technical Services, and Grid Higher Level
Programming, we have shown it is possible to program applications for the Grid.
Our experiences have shown that our approach can be used successfully on a
large scale, highly heterogeneous and geographically dispersed grid.

As the grid continues to evolve, so will our proposed programming approach.
We are currently concerned on Distributed Non Functional Exception Handling
as a Grid Technical Service, where remote exceptions can be handled in dis-
tributed environments. We are also concerned with other Grid Higher Level

6 Measured with the SciMark 2.0 benchmark.



strategies like Skeletons. A Skeleton can be defined as useful patterns of parallel
computation and interaction that can be packaged up as ”framework/second
order/template” (i.e. parametrized by other pieces of code) constructs. The idea
is to take advantage of Skeletons in order to ease the programming of Grid
applications.

References

1. L. Alvisi and K. Marzullo. Message logging: Pessimistic, optimistic, causal, and
optimal. Software Engineering, 24(2):149–159, 1998.

2. Laurent Baduel, Françoise Baude, and Denis Caromel. Efficient, Flexible, and
Typed Group Communications in Java. In Joint ACM Java Grande - ISCOPE
2002 Conference, pages 28–36, Seattle, 2002. ACM Press. ISBN 1-58113-559-8.

3. Laurent Baduel, Françoise Baude, and Denis Caromel. Object-Oriented SPMD. In
Proceedings of Cluster Computing and Grid, Cardiff, United Kingdom, May 2005.

4. Françoise Baude, Denis Caromel, Mario Leyton, and Romain Quilici. Integrating
deployment and file transfer tools for the grid. In Preliminary Proceedings 1st
Coregrid Integration Workshop (IW’05), Pisa Italy, pages 457–466, 2005.

5. Françoise Baude, Denis Caromel, Lionel Mestre, Fabrice Huet, and Julien
Vayssière. Interactive and descriptor-based deployment of object-oriented grid ap-
plications. In Proceedings of the 11th IEEE International Symposium on High Per-
formance Distributed Computing, pages 93–102, Edinburgh, Scotland, July 2002.
IEEE Computer Society.

6. Francoise Baude, Denis Caromel, Christian Delb, and Ludovic Henrio. A hybrid
message logging-cic protocol for constrained checkpointability. In Proceedings of
EuroPar2005, number 3648 in LNCS, pages 644–653, Lisbon, Portugal, August-
September 2005. Springer.

7. Francoise Baude, Denis Caromel, and Matthieu Morel. From distributed objects to
hierarchical grid components. In International Symposium on Distributed Objects
and Applications (DOA), Catania, Sicily, Italy, 3-7 November, pages 1226–1242,
Springer Verlag, 2003. Lecture Notes in Computer Science, LNCS.

8. E. Bruneton, T. Coupaye, and J. Stefani. Recursive and dynamic software compo-
sition with sharing, 2002.

9. Javier Bustos, Denis Caromel, Alexandre Di Costanzo, Mario Leyton, and José
Piquer. Balancing active objects on a peer to peer infrastructure. In Proceed-
ings of XXV International Conference of SCCC, Valdivia, Chile. IEEE CS Press,
November 2005.

10. Javier Bustos, Denis Caromel, Mario Leyton, and Jose Piquer. Load informa-
tion sharing policies in communication-intensive parallel applications. In Proc. of
Sixth IEEE International Symposium and School on Advance Distributed Systems
(ISSADS 2006), Guadalajara, Mexico., Springer LNCS Series, 2006. To appear.

11. Denis Caromel. Toward a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90–102, 1993.

12. K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. In ACM Transactions on Computer Systems, pages 63–75,
1985.

13. M. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson. A survey of rollback-
recovery protocols in message passing systems. Technical Report CMU-CS-96-181,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
oct 1996.



14. Fractal. http://fractal.objectweb.org.
15. Gnutella. http://www.gnutella.com.
16. D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Models, char-

acterization, and classification. In IEEE Transactions on Parallel and Distributed
Systems, volume 10, pages 703–713, 1999.

17. M. Mitzenmacher. How useful is old information? IEEE Transactions on Parallel
and Distributed Systems, 11(1):6–34, 2000.

18. NorduGrid. http://www.nordugrid.org.
19. Rüdiger Schollmeier. A definition of peer-to-peer networking for the classification

of peer-to-peer architectures and applications. In Peer-to-Peer Computing, pages
101–102, 2001.

20. E. Seidel, G. Allen, A. Merzky, and J. Nabrzyski. Gridlab: A grid application
toolkit and testbed. Future Generation Computer Systems, 18:1143–1153, 2002.

21. Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing
for locally distributed systems. IEEE Computer, 25(12):33–44, 1992.

22. Neil J. Sloane. Sloane a000170.
http://www.research.att.com/projects/OEIS?Anum=A000170.

23. OASIS Team and ETSI. 2nd grid plugtests report. Technical report, INRIA, 2005.
http://www-sop.inria.fr/oasis/plugtest2005/2ndGridPlugtestsReport.pdf.

24. Unicore. http://www.unicore.org.
25. Rob van Nieuwpoort, Jason Maassen, Gosia Wrzesinska, Rutger F. H. Hofman,

Ceriel J. H. Jacobs, Thilo Kielmann, and Henri E. Bal. Ibis: a flexible and efficient
java-based grid programming environment. Concurrency - Practice and Experience,
17(7-8):1079–1107, 2005.


