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Chapter 1

Introduction

The main goal of this thesis is to propose a framework for solving combinatorial opti-
mization problems with the branch-and-bound algorithm in Grid computing environ-
ments. Because we target large-scale Grids, this thesis also proposes an infrastructure,
based on a peer-to-peer architecture. For Grids that allows to mix desktop machines and
clusters.

1.1 Problematics

These last years, computational Grids have been widely deployed around the world to
provide high performance computing tools for research and industry. Grids gather large
amount of heterogeneous resources across geographically distributed sites to a single
virtual organization. Resources are usually organized in clusters, which are managed
by different administrative domains (labs, universities, etc.).

The branch-and-bound algorithm is a technique for solving problem such as combi-
natorial optimization problems. This technique aims to find the optimal solution and
to prove that no ones are better. The algorithm splits the original problem into sub-
problems of smaller size and then, for each sub-problem, the objective function computes
the lower/upper bounds.

Because of the large size of handled problems (enumerations size and/or NP-hard
class), finding an optimal solution for a problem can be impossible on a single machine.
However, it is relatively easy to provide parallel implementations of branch-and-bound.
Thanks to the huge number of resources Grids provide, they seem to be well adapted for
solving very large problems with branch-and-bound.

In parallel of Grid computing development, an approach for using and sharing re-
sources called peer-to-peer networks has also been deployed. Peer-to-peer focuses on
sharing resources, decentralization, dynamicity, and resource failures.

Grid users have usually access to one or two clusters and have to share their compu-
tation time with others; they are not able to run computations that would take months
to complete because they are not allowed to use all the resources exclusively for their ex-
periments. At the same time, these researchers work in labs or institutions, which have
a large number of desktop machines. These desktops are usually under-utilized and
are only available to a single user. They also are highly volatile (e.g. shutdown, reboot,

3
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failure). Organizing such desktop machines as a peer-to-peer network for computations
or other kinds of resource sharing is now increasingly popular.

However, existing models and infrastructures for peer-to-peer computing are lim-
ited as they support only independent worker tasks, usually without communications
between tasks. However peer-to-peer computing seems well adapted to applications
with low communication/computation ratio, such as parallel search algorithms. We
therefore propose in this thesis a peer-to-peer infrastructure of computational nodes
for distributed communicating applications, such as our branch-and-bound framework
for Grids.

Furthermore, Grid computing introduces new challenges that must be handled by
both infrastructure and framework. These challenges may be listed as follows:

• Heterogeneity: Grids gather resources from different institutional sites (labs, uni-
versities, etc.). This collection of gathered resources implies resources from mul-
tiple hardware vendors, different operating systems, and relying on different net-
work protocols. In contrast, each site is usually composed of a cluster, which is an
homogeneous computing environment (same hardware, same operating system,
same network for all cluster machines).

• Deployment: the large amount of heterogeneous resources complicates the deploy-
ment task in terms of configuration and connection to remote resources. Deploy-
ment sites targeted may be specified beforehand, or automatically discovered at
runtime.

• Communication: solving combinatorial optimization problems even in parallel with
a very large pool of resources may be very hard. Nevertheless, using communica-
tions between distributed processes may increase the computation speedup. How-
ever, Grids are not the most adapted environment for communicating because of
issues such as heterogeneity, high latency between sites, and scalability.

• Fault-tolerance: Grids are composed of numerous heterogeneous machines which
are managed by different administrative domains, and the probability of having
faulted nodes during an execution is not negligible.

• Scalability: this is one of the most important challenge for Grids. This is also
one of the most difficult task to handle: first, for the large number of resources
that Grids provide; and second, for the wide-distribution of resources leading to
high-latency and bandwidth reduction.

1.2 Objectives and contributions

This work belongs to the research area that focuses on Grid infrastructures and branch-
and-bound frameworks for Grids, and our main objective is to define an infrastructure
and a framework for solving combinatorial optimization problems that address the re-
quirement of Grid computing.

Grids gather large amount of heterogeneous resources across geographically dis-
tributed sites to a single virtual organization. Thanks to the huge number of resources
Grid provide, they seem to be well adapted for solving very large problems with branch-
and-bound. Nevertheless, Grids introduce new challenges such as deployment, hetero-
geneity, fault-tolerance, communication, and scalability.
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In this thesis, we consider that some of these challenges must be handled by the
underlying Grid infrastructure, particularly deployment, scalability, and heterogeneity;
and that the other challenges and scalability must be handled by the framework. In the
proposed Grid infrastructure, we aim at easing the access to a large pool of resources.
Moreover, with these resources we aim at providing a framework that takes the max-
imum benefit of all these computational power. Furthermore, both infrastructure and
framework have to hide all Grid difficulties.

The main contributions of this thesis are:

• an analysis of existing peer-to-peer architectures, and especially those for Grid
computing;

• an analysis of existing branch-and-bound frameworks for Grids;

• a peer-to-peer infrastructure for computational Grids, that allows to mix desktop
machines and clusters, the infrastructure is decentralized, self-organized, and con-
figurable;

• an operating infrastructure that was deployed as a permanent desktop Grid in the
INRIA Sophia lab, with which we have achieved a computation record by solving
the n-queens problem for 25 queens; and

• a branch-and-bound framework for Grids, which is based on a hierarchical master-
worker approach and provides a transparent communication system among tasks.

1.3 Overview

This document is organized as follows:

• In Chapter 2, we position our work in the context of the Grid computing. First,
we provide an overview of existing Grid systems; this allows us to point out what
must be enhanced. Then, we define the notion of peer-to-peer systems and we show
that peer-to-peer can provide more dynamic and flexible Grids. We also position
our work in the context of peer-to-peer systems for Grids. Afterward, we present
existing branch-and-bound models for Grids and we relate our work to existing
frameworks, which target Grids. Finally, we present the active object model and
the ProActive middleware that we based our work on.

• In Chapter 3, we propose a desktop Grid infrastructure based on a peer-to-peer
architecture. With this infrastructure, we are the first to have solved the n-queens
problem with 25 queens: the computation took six months to complete.

• In Chapter 4, we describe our branch-and-bound framework for Grids to solve com-
binatorial optimization problems. We also report experiments with the flow-shop
problem on a nationwide Grid, the french Grid’5000.

• Chapter 5 describes an extension of our peer-to-peer infrastructure to mix desktops
and clusters. With this large-scale Grid, we report experiments with both n-queens
and flow-shop.

• Chapter 6 describes the deployment framework provided by ProActive. We also
present some improvements of this framework: nodes localization (used by our
branch-and-bound framework implementation to optimize communications), de-
ployment of non-functional services (such as fault-tolerance or load-balancing),
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and a mechanism to describe requirements of the application to deploy. Then,
we present a load-balancing mechanism based on our peer-to-peer infrastructure.

• In Chapter 7, we give an overview of our current work and of the enhancements
we foresee.

• Finally, Chapter 8 concludes and summarizes the major achievements of this the-
sis.



Chapter 2

Principles and Positioning

In this chapter, we justify our choice of a peer-to-peer system for acquiring computa-
tional resources on Grids, by evaluating existing Grid systems and peer-to-peer archi-
tectures. We also evaluate existing branch-and-bound frameworks for Grids and we
point out what requirements are not addressed by those frameworks, to motivate our
model for Grid branch-and-bound.

This chapter is organized as follows: first, we define Grid computing and we present
an overview of Grid systems; then, we show a classification of peer-to-peer systems and
we compare both approaches, Grid and peer-to-peer; next, we evaluate existing peer-
to-peer systems for Grids and from this analysis we point out what requirements are
needed to provide a peer-to-peer infrastructure for Grids.

The chapter finishes with a presentation of branch-and-bound, which is an algorith-
mic technique for solving combinatorial optimization problems, and we discuss existing
frameworks for Grids. Based on this discussion, we show the main properties that our
Grid branch-and-bound framework requires.

Finally, we describe the active object model and the ProActive middleware that we
based our work on.

2.1 Grid: Principles and Positioning

In this section, we define the concept of the Grid and then we position our contribution
with respect to general Grid architecture.

2.1.1 Principles of Grid computing

With the recent explosion of interest in the Grid from industry and academic, it is now
harder to precisely define the concept of Grid. We read about Computational Grids, Data
Grids, Campus Grids, Cluster Grids, Bio Grids, and even Equipment Grids. Hence, in
this section we define the Grid within the context of the work done in this thesis.

Grid computing was first popularized with the book ”The Grid: Blueprint for a New
Computing Infrastructure” [FOS 98]. The concept of Grid has since matured and may
now be defined as follows [LAS 05]:

7
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Definition 2.1.1 A production Grid is a shared computing infrastructure of hardware,
software, and knowledge resources that allows the coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations to enable sophisti-
cated international scientific and business-oriented collaborations.

Virtual organizations are defined in the Grid foundation paper [FOS 01] as:

Definition 2.1.2 Virtual organizations enable disparate groups of organizations and/or
individuals to share resources in a controlled fashion, so that members may collaborate
to achieve a shared goal.

In other words, Grids gather large amounts of heterogeneous resources across ge-
ographically distributed sites for use by virtual organizations. Resources are usually
organized in groups of desktop machines and/or clusters, which are managed by differ-
ent administrative domains (labs, universities, companies, etc.). Virtual organizations
are then set up following discussions and agreements between involved partners.

Grids introduce new challenges such as:

• Distribution: resources are distributed on different sub-networks with different
bandwidth, sub-networks are connected to each other by shared nationwide net-
works, resulting in significant latency and bandwidth reduction.

• Deployment: the large amount of heterogeneous resources complicate the deploy-
ment task in terms of configuration and connection to remote resources. Deploy-
ment sites targeted may be specified beforehand, or automatically discovered at
runtime.

• Multiple administrative domains: each domain may have its own management
and security policies.

• Scalability: Grid applications aim to use a large number of resources, which are
geographically distributed. Hence, Grid frameworks have to help applications with
scalability issues, such as providing parallelism capabilities for a large number of
resources.

• Heterogeneity: each computing centre is likely owned by a different institution.
Thus, Grids gather resources from different hardware vendors, running with dif-
ferent operating systems, and relying on different network protocols. In contrast,
each site is usually composed of homogeneous resources, often organized in a sin-
gle cluster, which provides a high performance environment for computations and
communications.

• High performance and communication: applications that target Grids, cannot be
executed on a common dedicated computing infrastructures, such as clusters. These
kind of applications aim to solve computation-hungry problems and are designed
to efficiently use parallelism and communications.

• Dynamicity: applications may need more resources at runtime. Also, the large
number of resources that are distributed on different domains implies a high prob-
ability of faults, such as hardware failures, network down time, or maintenance,
all the Grid infrastructure, Grid applications, and users need to be aware of to
respond appropriately.
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• Programming model: a Grid gathers geographically disperse and administratively
independent computational sites into a large federated computing system with
common interfaces. New programming models have to be defined to abstract away
these complexities from programmers.

• Fault-tolerance: Grids are composed of numerous heterogeneous machines and
which are managed by different administrative domains, and the probability of
having faulted nodes during an execution is not negligible.

Finally, Grid computing aims at providing transparent access to computing power
and data storage from many heterogeneous resources in different geographical loca-
tions. This is called virtualization of resources.

2.1.2 Positioning with respect to general Grid architecture

In the context of this thesis, we aim to define a framework for solving optimization
problems with the branch-and-bound technique (branch-and-bound is defined in Sec-
tion 2.3.1). This framework has the goal of taking advantage of the large number of
resources provided by Grids to minimize the computation time. In addition, another
goal of this thesis is to offer a peer-to-peer network to provide a large-scale computa-
tional infrastructure (see the next Section).

First, from a user point of view, Grid application developers may be classified in
three groups, as proposed in [GAN 02]. The most numerous group are end users who
build packaged Grid applications by using simple graphical or Web interfaces; the sec-
ond group is programmers that know how to build a Grid application by composing
them from existing application ”components” and Grid services; the third group con-
sists of researchers that build individual components of a distributed application, such
as simulation programs or data analysis modules.

In this thesis, we essentially address the group of researchers, by providing them a
complete branch-and-bound framework for solving optimization problems. We also ad-
dress the second group, programmers, with a peer-to-peer infrastructure for dynamically
acquiring a large number of resources.

Then, from the software point of view, the development and the execution of Grid
applications involve four concepts: virtual organizations, programming models, deploy-
ment, and execution environments. All these concepts may be organized in a layered
view of Grid software, shown in Figure 2.1.

• At the bottom, the Grid fabric, which is all resources gathered by the Grid. These
resources consist of computers, databases, sensors, and specialized scientific in-
struments. They are accessed from operating systems (and virtual machines), net-
work connection protocols (rsh, ssh, etc.), and cluster schedulers (PBS, LSF, OAR,
etc.). At this layer, resources are federated through virtual organizations.

• Above, layer 2, is the Grid middleware infrastructure, which offers core services
such as remote process management and supervision, information registration and
discovery, security and resource reservation. Various frameworks are dedicated to
these aspects. Some of them are global frameworks providing most of these ser-
vices, such as the Globus toolkit [FOS 05] which includes software services and
libraries for resource monitoring, discovery, and management, plus security and
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Figure 2.1: Positioning of this thesis within the Grid layered architecture

file management. Nimrod [Dav 95] (a specialized parametric modeling system),
Ninf [SEK 96] (a programming framework with remote procedure calls) and Con-
dor [THA 05] (a batch system) take advantage of the Globus toolkit to extend their
capabilities towards Grid computing (appending the -G suffix to their name).
The deployment and execution environments for Grid entities are provided by the
Grid middleware layer.

• Layer 3 is the Grid Programming layer, which includes programming models,
tools, and environments. This layer eases interactions between application and
middleware, such as Simple API for Grid Applications (SAGA) [GOO 05, GGF04]
an initiative of the Global Grid Forum (GGF). This initiative is inspired by the Grid
Application Toolkit (GAT) [ALL 05] and Globus-COG [LAS 01] which enhances the
capabilities of the Globus Toolkit by providing workflows, control flows and task
management at a high level of abstraction. As reported by some users [BLO 05]
however, some of these abstractions still leave the programmer with the burden
of dealing with explicit brokerage issues, sometimes forcing the use of literal host
names in the application code.
One of the goals of this thesis is to hide all these issues from the programmer by
providing an abstraction of resources.
This layer includes programming models, such as MPICH-G [KAR 03] a grid-
enable implementation of MPI that use services from Globus Toolkit. Common
Component Architecture [ARM 99] and Grid Component Model [OAS 06] are both
programming models for the Grid based on the component paradigm.

• The top layer is the Grid Application layer, which contains applications developed
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using the Grid programming layer. Web portals are also part of this layer, they
allow users to control and monitor applications through web applications, such as
OGCE [OGC] or GridSphere [Gri c]. The layer includes Problem Solving Environ-
ment (PSE), which are systems that provide all facilities needed to solve a specific
class of problems, NetSolve/GridSolve [SEY 05] are complete Grid environment
that help programmers for developing PSEs.

Some Grid middlewares cover more than a single layer, it is notably the case for Uni-
core [UNI] and gLite [LAU 04], which provide Grid programming features in addition
of Grid middleware properties, for instance access to federated Grid resources, with ser-
vices including resource management, scheduling and security. ProActive is also one of
these, we describe in detail ProActive in Section 2.4.

The contributions of this thesis belong to the Grid programming layer and the Grid
middleware infrastructure. The branch-and-bound framework is a Grid programming
environment and the peer-to-peer infrastructure is a Grid middleware infrastructure
(resource trading). Related work to branch-and-bound and to peer-to-peer are consid-
ered in more details in the next sections.

The academic community is gathering distributed resources to build Grids. Many
of these Grids are now large infrastructure nationally distributed. Below we describe
several of the most important of these projects:

• EGEE [EGE 04]: is an European project that aims to provide a production quality
Grid infrastructure spanning more than 30 countries with over 150 sites to a myr-
iad of applications from various scientific domains, including Earth Sciences, High
Energy Physics, Bio-informatics, and Astrophysics.

• TeraGrid [TER]: is an open scientific discovery infrastructure combining leader-
ship class resources at nine partner sites in USA to create an integrated, persistent
computational resource.

• Open Science Grid (OSG) [GRI a]: is a USA Grid computing infrastructure that
supports scientific computing via an open collaboration of science researchers, soft-
ware developers and computing, storage and network providers.

• Grid’5000 [CAP 05]: this project aims at building a highly reconfigurable, control-
lable and monitorable experimental Grid platform gathering nine sites geographi-
cally distributed in France. Most of this thesis experiments use this platform.

• NorduGrid [SMI 03]: is a Norway Grid research and development collaboration
aiming at development, maintenance and support of the free Grid middleware,
known as the Advance Resource Connector (ARC).

• ChinaGrid [JIN 04]: aims to provide a nationwide Grid computing platform and
services for research and education purpose among 100 key universities in China.

• Naregi [NAR]: aims to conduct R&D on high-performance and scalable Grid mid-
dleware to provide a future computational infrastructure for scientific and engi-
neering research in Japan.

• DAS [BAL 00]: The Distributed ASCI Supercomputer (DAS) is a wide-area dis-
tributed computers, distributed over four Dutch universities.

In addition to all these projects, global interaction between these infrastructures
may also be achieved, resulting in even larger virtual organizations, such as during the
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Grid Plugtests events [ETS 05b, ETS 05a, ETS 06].

Most current Grids have static infrastructures and use dedicated clusters. The inclu-
sion of new machines to virtual organizations are scheduled and budgeted a long time
before, i.e. it is impossible to dynamically add spare resources from a site to temporarily
increase the computational power of the Grid. Nearly all these Grids are, for the mo-
ment, experimental platforms for helping researchers to prepare the next generation of
platforms. NorduGrid, EGEE, and TeraGrid are production Grids.

Although these projects are called Grids their lack of dynamic infrastructure, among
others to fulfill the given definition of Grid (see Definition 2.1.1 and Definition 2.1.2).
In the context of this thesis, we propose using a peer-to-peer infrastructure to solve the
issue of dynamically including new machines into a Grid. The next section presents
peer-to-peer systems.

2.2 Peer-to-Peer: Principles and Positioning

Grid computing aims at building virtual organizations composed of shared resources
from different institutions. Another concept which targets the same goal is Peer-to-Peer.
In this section, we first define the notion of peer-to-peer, then we compare peer-to-peer
and Grid computing, and finally we position our contribution with respect to peer-to-
peer systems.

2.2.1 Principles of peer-to-peer systems

The first work on peer-to-peer (P2P) systems appeared in the early 1990s [SIM 91,
YOU 93]. However, it was not until the early 2000s that P2P systems were popular-
ized with Napster [NAP 99], a file sharing application, and SETI@home [AND 02], a
CPU-cycle stealing application. The key idea of these applications is to take advantage
of under-exploited desktop machines at the edges of the Internet.

In the distributed computing research community, there are many definitions about
what P2P systems are: decentralized and non-hierarchical node organization [STO 03],
or even much like a Grid from the book ”Peer-to-Peer: Harnessing the Power of Disruptive
Technologies” [ORA 01]:

Peer-to-Peer is a class of applications that take advantage of resources –
storage, cycles, content, human presence – available at the edges of the Inter-
net.

Many of those definitions are similar to other distributed systems, such as client-
server architecture or master-worker paradigm. Napster and SETI@home are both
based on a centralized system, which is master-worker. E. Heymann et al. define the
master-worker paradigm as follows [HEY 00]:

Definition 2.2.1 The Master-Worker paradigm consists of two entities: a master and
multiple workers. The master is responsible for decomposing the problem into small tasks
(and distributes these tasks among a farm of worker processes), as well as for gathering
the partial results in order to produce the final result of the computation. The worker
processes execute in a very simple cycle: receive a message from the master with the next
task, process the task, and send back the result to the master.
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Figure 2.2 show an example of master-worker architecture.
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Figure 2.2: Master-worker architecture

In SETI@home, the master distributes computational tasks to workers, which are
desktop machines at the edges of Internet. Then, workers send back results to the mas-
ter that checks the computation for doctored results. For Napster, the master maintains
a global list of all connected clients’ files and when a client searches for a file the master
connect it directly to the client which stores the requested file.

SETI@home and Napster are considered as the first-generation of P2P systems, based
on a centralized approach to take advantage of desktops at the edges of the Internet.

The second-generation is based on decentralized approach, such as Gnutella [GNU 00],
Freenet [CLA 00], and KaZaA [KAZ 00] which are all file sharing applications. These
applications are the first to propose a new architecture different from master-worker. R.
Schollmeier [SCH 01] defines peer-to-peer as:

Definition 2.2.2 A distributed network architecture may be called a Peer-to-Peer (P-to-
P, P2P, . . . ) network, if the participants share a part of their own hardware resources
(processing power, storage capacity, network link capacity, printers, etc.). These shared
resources are necessary to provide the Service and content offered by the network (e.g.
file sharing or shared workspaces for collaboration). They are accessible by other peers
directly, without passing intermediary entities. The participants of such a network are
thus resource (Service and content) providers as well as resource (Service and content)
requesters (Servent-concept).

The key ideas behind P2P are sharing resources, point-to-point direct communica-
tions between entities, and that all entities are at the same time providers and re-
questers of resources. The entities or participants of P2P networks are named peers.
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In other words, a peer of a P2P network shares its resources with other peers and can
directly access theirs shared resources.

In addition to defining P2P, Schollmeier [SCH 01] also proposes a classification of
P2P systems. He distinguishes two types of P2P networks, which:

• ”Pure” peer-to-peer network defined as:

Definition 2.2.3 A distributed network architecture has to be classified as a ”Pure”
Peer-to-Peer network, if it is firstly a Peer-to-Peer network according to Definition 2.2.2
and secondly if any single, arbitrary chosen Terminal Entity can be removed from
the network without having the network suffering any loss of network service.

• ”Hybrid” peer-to-peer network defined as:

Definition 2.2.4 A distributed network architecture has to be classified as a ”Hy-
brid” Peer-to-Peer network, if it is firstly a Peer-to-Peer network according to Defini-
tion 2.2.2 and secondly a central entity is necessary to provide parts of the offered
network services.

In contrast to the first-generation, pure P2P networks have no central entities. As
shown by Figure 2.3, each peer maintains a list of connections to other peers, called
neighbors or acquaintances. Due to the lack of structure, there is no information about
the location of resources, therefore peers broadcast queries through the network, with
a method called flooding. In this example, the peer A queries for the resource Y , it
floods the network and then when resource Y is found, A directly accesses the requested
resource hosted by peer B.

B

A

Resource Y

B

A

Resource Y

B

A

Resource Y

Peers in acquaintance Message queryPeer

FloodingUnstructured P2P Peer A accesses directly to resource Y on B

Figure 2.3: Unstructured peer-to-peer network

The drawback of pure P2P is that flooding generateslarge messaging volumes in or-
der to find the desired resources. Ritter shows that Gnutella does not scale well [RIT ].
In order to limit the cost of flooding many mechanisms have been proposed: Dynamic
Querying [Dyn], which dynamically adjusts the TTL of queries; or by dynamically adapt-
ing the search algorithms [CHA 03].
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Hybrid P2P combines the features of centralized P2P (master-worker) and pure P2P.
It defines several super-peers. Each super-peer acts as a server to a small portion of
network. Hybrid P2P has been used by Gnutella (version 0.6) to solve the flooding cost
problem, by using central servers to maintain global lists of shared files.

Figure 2.4 shows an example of hybrid P2P, the peer A requests resource Y from
a super-peer and the super-peer then floods the super-peer network to find that Y is
hosted by peer B.

B

A

Resource Y

B

A

Resource Y

B

A

Resource Y

Peers in acquaintance

Message query

Peer

FloodingHybrid P2P Peer A accesses directly to resource Y on B

Server

B -> Y
...

Figure 2.4: Hybrid peer-to-peer network

Compared to pure P2P, hybrid P2P reduces the message traffic and saves the band-
width. More generally, all P2P systems based on super-peer network [YAN 03] are hy-
brid P2P, such as JXTA [SUN 01], which is a set of open protocols based on P2P.

Hybrid P2P reduces cost and has better scalability than pure P2P, however it is
still a centralized approach. The third-generation of P2P aims to solve both scalability
and centralization issues. This lastest generation is based on distributed hash tables
(DHT) [STO 03].

DHTs do indeed enable pure P2P as defined by Definition 2.2.3, but they differ from
the first-generation in the method they use to find resources on the network. DHTs do
not use flooding, they organize peers in a structured network. DHTs are also often called
structured networks. On the contrary, pure P2P networks of the second-generation that
use flooding are called unstructured networks. The organization result of the network
topology and/or the data distribution is that looking for a resource requires O(log n)
steps, whereas in comparison unstructured P2P networks require O(n) steps.

Figure 2.5 shows an example of a DHT based on Chord [STO 03]. Chord organizes
peers on a ring, each peer has an identifier (ID) of m-bit size, and thus the ring cannot
have more than 2m peers. Each peer knows m other peers on the ring: successor finger
i of n points to node at n + 2i; acquaintances are stored in the finger table. A key is
generated for the resource (typically a file), the key is also named the hashcode. The
key is mapped to the first peer which ID is equal to or follows the key. Each peer is



16 Chapter 2. Principles and Positioning

responsible for O(K
N ) keys, so O(K

N ) keys must be reallocated when a peer joins or leaves
the ring. In the figure the resource has a key K54, and the peer N8 has three hops to
find the resource.

N1

N38

N8

N14

N21

N32N42

N48

N51

N56

lookup(K54)

Peer Query

02  -1m

K54

Finger table

N42N8+32
N32N8+16
N21N8+8
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Figure 2.5: Structured with DHT peer-to-peer network

The ring topology is one technique for a DHT. It is also used by Pastry [ROW 01].
The Content-Addressable Network (CAN) [RAT 01] system uses another method, which
consists in organizing peers in a virtual multi-dimensional cartesian coordinate space.
The entire space is partitioned among all peers and each peer owns a zone in the overall
space.

DHTs are now used by the most recent file sharing P2P applications, such as the
popular BitTorrent [COH 03]. This lastest generation of P2P systems solves scalabil-
ity and failure issues without introducing central points. However, DHTs have earned
some criticisms for their high maintenance cost due to high churn [CHA 03], where the
system has to discover failures, re-organize lost data and pointers, and then manage
data re-organization when the failed peers return to the network.

In less than a decade, P2P systems have matured from centralized approaches to
fully decentralized approaches. The original goal of P2P was to take advantage of under-
utilized desktops located at the network edge. The goals have now shifted to manage
scalability, failure, and performance of systems that are composed of a large number of
peers.

Currently, P2P focuses on sharing resources, decentralization, and stability. How-
ever, current research aims at sharing data using, for example, DHTs. In the context
of this thesis, we present a decentralized P2P infrastructure for sharing computational
nodes.

Grids and P2P are both environments for large-scale applications, they also target
similar goals, such as resource sharing and dynamicity. The next section compares in
details P2P and Grid.
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2.2.2 Comparing peer-to-peer and Grid computing

In the past few years, new approaches to distributed computing have emerged: Grid
computing and peer-to-peer (P2P). Both approaches have a similar objective: the pooling
and coordinated use of large sets of distributed resources. However, the two technologies
are based on different user communities and, at least in their current designs, focus on
different requirements.

The first difference between them is the user base, i.e. the community, as reported
by [FOS 03, GOU 00a]. Current Grids provide many services to moderate-sized commu-
nities composed of scientists. In contrast, P2P usually provides a single service, typically
file sharing, to a large community of Internet users.

As Figure 2.6 depicts, development of Grids and P2P are driven differently. In the
P2P community, users demand applications, because P2P infrastructure are generally
mono-application. The P2P application/service writer has to develop a new infrastruc-
ture or adapt an existing one for the new service. Grids are more adapted to provide
multi-application/services on the same infrastructure, because infrastructures are built
over standards, such as the Global Grid Forum (GGF) [FOR 04] and the Open Grid Ser-
vices Architecture (OGSA) an integrated generic computational environment [FOS 02].
Thus Grid users, scientists, demand new services or applications from application writ-
ers, who can directly provide requested service or, if possible to implement, pass on to
Grid infrastructure architects.

Users

P2P Grid

Users Users 
(scientists)

Application 
writers

Application 
writers

Infrastructure 
writers

Infrastructure 
writers

demand

demand Toolkit OGSA

Users

Research and
developmment

place demand on

demand

Figure 2.6: Peer-to-Peer and Grid computing communities drive technology development

Table 2.1 summarizes the basic differences between Grid computing and P2P. These
differences have been reported by Ledlie et al. [GOU 00a], and by Foster et al. [FOS 03].

Although Grids and P2P systems emerged from different communities to serve dif-
ferent needs and provide different features, both constitute successful resource sharing
paradigms. Ledlie et al. [GOU 00a] and by Foster et al. [FOS 03] argue that Grids and
P2P will converge. They argue that they could each benefit from the other.

The Peer-to-Peer Grid [FOX 03] is one of the first that understood the benefit of mix-
ing Grids and P2P concepts to provide a global computing infrastructure. Thereby, peer-
to-peer Grid proposes mixing structured services (concept from Grids) with dynamic
services (concept from P2P). The infrastructure is composed of services and provides
collaborative services to users, hence the infrastructure is based on Web Services. Grids
and P2P concepts are clearly separated: centralized servers are used at the core of the
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Table 2.1: The basic differences between Grid computing and P2P

In terms of . . . Grid computing Peer-to-Peer
Users Scientific community Any Internet users
Computing Dedicated clusters and large

SMP machines
Common desktop machines

Network High speed dedicated network Internet TCP connections
Administration Centralized and hierarchical Distributed
Applications Complex scientific applica-

tions, large-scale simulations,
data analysis, etc.

File sharing, CPU-cycle steal-
ing, real-time data streaming,
etc.

Scalability Small number of specialized
sites (moderate size)

Any desktop at the edges of In-
ternet (large size)

Security Secure services for job submis-
sion and interactive execution
(high)

Poor

Participation Static and take time to add
new nodes

High churn

Trust Identified and trusted users Anonymous users, untrusted
Standards GGF, OGSA, Web Services No standard

infrastructure (as Grids) and machines in labs are organized as a P2P network.

Grids are based on centralized approaches and resources are statically shared, i.e.
resources are shared between institutions but are dedicated to the Grid. Also, the inclu-
sion of new resources in the infrastructure needs previous discussions and agreements
between Grids members. Furthermore, Grid resources are usually high performance
environments, such as clusters. Thus, many of current Grid infrastructures, such as
Grid’5000, do not completely fulfill the Definition 2.1.1.

On the contrary, P2P networks are decentralized and can handle dynamic inclusion
of resources. Unlike Grids, current P2P applications, such as Gnutella, focus on file
sharing and desktop machines. In the context of this thesis, we propose a P2P infras-
tructure for building large-scale Grids. This infrastructure handles the dynamic inclu-
sion of both desktop and cluster resources. Unlike the other P2P infrastructures, the
proposed one is not dedicated to file sharing but it is dedicated for computing.

In the next section, we give an overview of existing approaches that can be consid-
ered as P2P infrastructures for Grids.

2.2.3 Overview of existing peer-to-peer systems

The main goal of Grids is to provide large pools of heterogeneous resources gathered in
virtual organizations. Resources are geographically distributed around the world.

In this section, we present some P2P systems for computation, which fulfill both
definitions of Grid and P2P. First, we present global computing platforms that are first
P2P generation. Then, we introduce decentralized P2P systems.
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2.2.3.1 Global computing platforms

Global computing platforms, also named Volunteer computing or even Edge computing,
aim at using desktop computers that are located at the edges of the Internet. With the
recent explosion of CPU performance and easy access to the Internet in industrialized
countries, millions of desktop machines are inter-connected and are under-exploited by
their owners. Global computing consists of a technique, named cycle stealing, which
uses idle CPU cycles of desktop machines connected to the Internet. These cycles would
otherwise be wasted at night, during lunch, or even in the scattered seconds throughout
the day when the computer is waiting for user input or slow devices.

Global computing was popularized beginning in 1997 by distributed.net [dis 97] and
later in 1999 by SETI@home to harness the power of desktops, in order to solve CPU-
intensive research problems. The main idea of these projects is to grow a community
of users around the world donating the power of their desktops to academic research
and public-interest projects. For instance, distributed.net started an effort to break the
RC5-56 portion of the RSA secret-key challenge, a 56-bit encryption algorithm that had
a $10,000 USD prize available to anyone who could find the key.

In the rest of this section we describe the famous SETI@home platform and the
generalization of its platforms with BOINC and XtremWeb.

SETI (Search for Extra-Terrestrial Intelligence) is a set of research projects that aim to
explore, understand and explain the origin, nature and prevalence of life in the universe.
One of these projects is SETI@home [AND 02], which is a scientific experiment that uses
Internet-connected computers to analyze radio telescope data.

SETI@home is based on a centralized approach, master-worker (see Definition 2.2.1).
A radio telescope records signals from space. Next, recorded data are divided into work
units, with each piece being sent to workers.

Workers are desktops located at the edges of the Internet, and each work unit is pro-
cessed by the worker during its idle time. The result of the work unit is then sent back
to the server and the worker gets a new work unit. The worker is deployed via a screen-
saver that Internet users can install on their desktop. This screen-saver approach is an
important part of the SETI@home success.

In 2002, SETI@home was considered the world’s fastest supercomputer with a total
of 27 TeraFLOPS [AND 02]. Now, with over 1.36 million computers in the system, as of
March 2007, SETI@home has the ability to compute over 265 TeraFLOPS [ZUT ]. The
Lawrence Livermore National Laboratory (LLNL) currently hosts the most powerful
supercomputer [PRO 07], which has a theoretical power of 367 TeraFLOPS and a mea-
sured power of 280 TeraFLOPS, as reported by the TOP500 [SIT ] project, which ranks
and details the 500 most powerful publicly-known computer systems in the world.

BOINC As a result of the success of the SETI@home platform, the platform has been
open to other scientific projects such as mathematics, medicine, molecular biology, clima-
tology, and astrophysics. The platform is now known as the Berkeley Open Infrastructure
for Network Computing (BOINC) [AND 04] and makes it possible for researchers to use
the enormous processing power of personal computers around the world. SETI@home is
now one of the applications of the BOINC platform. This platform can be considered as
the most powerful supercomputer with a total of 536 TeraFLOPS [ZUT ].
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XtremWeb [GIL 01] is another global computing platform. The main goal of this plat-
form is to provide a generic system for volunteer computing. XtremWeb provides a com-
plete API to develop applications. Participants contribute in two different ways: they
may be users by submitting jobs to the platform, or they may be providers by sharing
their idle cpu-cycles with the rest of the system.

The XtremWeb platform aims principally to run master-worker applications. Users
submit jobs to master and workers download tasks from a server, then when tasks are
completed, results are sent back to the server. Thus, users have no direct control on
workers. Furthermore, users have to provide different compiled versions of their tasks
to be able to use workers, running on different architectures, different operating sys-
tems, etc.

The master may be not a single entity running on a single machine, it may be dis-
tributed on several machines to reduce bottlenecks. For instance, the interface with
users can run on a separate machine than the machine which runs the task allocation,
and a third machine can handle worker monitoring and fault-tolerance.

Communications rely on the Remote Procedure Call (RPC) model. In order to be able
to pass through firewalls, users and workers initiate all communications to the master,
e.g. job submission and tasks requests.

XtremWeb provides a generic and complete platform for scientific applications rely-
ing on global computing platforms.

Condor [CON 93] is a specialized workload management system for compute-intensive
jobs. Like other full-featured batch systems, Condor provides a job queueing mecha-
nism, scheduling policy, priority scheme, resource monitoring, and resource manage-
ment. Condor can be used to build Grid-style computing environments that cross ad-
ministrative boundaries. Condor allows multiple Condor compute installations to work
together. It also incorporates many of the emerging Grid-based computing methodolo-
gies and protocols. For instance, Condor-G [FRE 01] is fully interoperable with resources
managed by Globus. Condor uses a mechanism called matchmaking for managing re-
sources between owners and users. This mechanism is mainly based on a matchmaking
algorithm, which compares two descriptors called classified advertisements (ClassAds);
one describes the task and one describes the compute node, i.e. there are two kinds of
ClassAds: Jobs ClassAd and Machines ClassAd. Users have to provide this Job Clas-
sAd with the query description of which resources are needed. Condor is well suited for
deploying batch jobs, which need to run on specific resources, such as on a given archi-
tecture type.

Beside the large power that global computing can gather, resources are shared with
their normal owners, thus desktops can be available for a small part of time. Global
computing platforms have to manage high volatility.

2.2.3.2 Peer-to-Peer platforms

In addition to global computing platforms, which are considered the first generation of
P2P systems and centralized, we now present decentralized systems, such as pure or
hybrid P2P. Thus, these systems are considered the second generation of P2P architec-
tures.
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OurGrid [AND 05a] is a complete solution for running Bag-of-Tasks applications on
computational Grids. These applications are parallel applications whose tasks are in-
dependent. Furthermore, OurGrid is a cooperative Grid in which labs donate their
idle computational resources in exchange for accessing other labs idle resources when
needed. It federates both desktops and dedicated clusters. The architecture of this
middleware is composed of three main components: MyGrid, a scheduler, which is the
central point of the Grid and provides all the necessary support to describe, execute,
and monitor applications; Peers organize and provide machines that belong to the same
administrative domain (i.e. they are machine providers for the scheduler); and User
Agents which run on each Grid machine and provide access to the functionality of the
machine (User Agents are registered in Peers). As with Condor, OurGrid users have
to provide a Job descriptor file, which queries resources and describes all tasks of the
application to deploy. Hence, OurGrid is an hybrid P2P network.

JXTA Project [SUN 01] is a set of open protocols that allow any connected device on
the network ranging from cell phones and wireless PDAs to PCs and servers to commu-
nicate and collaborate in a P2P manner. JXTA creates a virtual network where any peer
can interact with other peers and resources directly even when some of the peers and
resources are behind firewalls and NATs or are relying on different network transports.
JXTA is a low-level specification/system for P2P communications. The communication
protocol is based on an XML data structure. Indeed all communications are handled by
the JXTA P2P network in order to pass through firewalls. JXTA can be seen as a net-
work layer, like TCP/IP sockets, on which developers build their applications. The core
of JXTA network is composed of super-peers that manage the rest of the infrastructure,
thus JXTA is a hybrid P2P systems.

JaceP2P [BAH 06] is a decentralized framework for running parallel iterative asyn-
chronous applications on Grids.

A parallel iterative asynchronous algorithm is a technique that solves problems by
iterations, rather than doing it in one step. The technique proceeds by successively re-
fining a solution. In parallel execution, communications must be performed between
processes after each iterations in order to satisfy all the computing dependencies. Syn-
chronizations can be done in an asynchronous manner to hide idle times required by
sharing dependencies.

The JaceP2P architecture is a hybrid P2P system, where super-peers manage the in-
troduction of new peers in the network. Peers are able to directly communicat between
each other, asynchronously, for exchanging data and results while the computation con-
tinues. The framework focuses on fault-tolerance issues of iterative asynchronous ap-
plications by proposing a mechanism based on check-points, which are shared between
peers. JaceP2P provides an API to implement iterative asynchronous applications and
a P2P infrastructure designed to run these applications.

2.2.3.3 Synthesis

Table 2.2 summarizes and compares the main P2P infrastructures. The table is split
in two parts: the first for global computing platforms, and the second for decentralized
platforms.

We choose to compare these systems by selecting several criteria, which are the P2P
architecture (Kind), the type of shared resources (Resources), the use of direct or point-
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to-point communication between peers (PtP com.), and which kind of applications can
be deployed (Applications).

Table 2.2: Evaluation of the general properties of evaluated systems

Systems Kind Resources PtP com. Applications
BOINC Centralized Desktops no Scientific Applications

XtremWeb Centralized Desktops no Scientific Applications
Condor Centralized Desktops & Clusters no Bag-of-Tasks

OurGrid Hybrid P2P Desktops & Clusters no Bag-of-Tasks
JXTA Hybrid P2P Everything yes∗ Collaborative/Sharing

JaceP2P Hybrid P2P Desktops yes Iterative algorithm
* communications are handled by the JXTA network, thus the communication is not direct between peers

and may pass by unknown hops.

All global computing platforms are centralized and principally target desktops lo-
cated at the Internet edge. BOINC has been historically designed for a single applica-
tion, SETI, and then generalized for embarrassingly parallel applications.

Providing point-to-point communication between peers is important for performance
and scalability issues. Only JXTA and JaceP2P, which are hybrid P2P, provide com-
munication without passing through a center point, even if JXTA does not allow direct
communications.

Furthermore, only JXTA is able to deploy any kind of applications, others handle
bag-of-tasks applications. Bag-of-tasks applications are composed of independent tasks
that do not need to communicate with each other to complete their computation. For
OurGrid, a task may be a parallel application written in MPI for instance, that requires
a cluster to be executed.

No third generation, DHT, frameworks are presented here, because they focus on
data sharing and generally for sharing anything than may be represented by a hash.
The goal is to minimize the number of message to find the peer that owns the resource
represented by the hash. These systems are not designed for CPU intensive applica-
tions, such as combinatorial optimization problems targeted by this thesis.

2.2.4 Requirements for computational peer-to-peer infrastructure

In the context of this thesis, we aim to propose a framework based on the branch-and-
bound technique to solve combinatorial optimization problems. The distinguishing fea-
ture of this work is the ability to incorporate large number of dynamic heterogeneous
resources that Grids can provide.

We previously presented the Grid layered architecture; with that model, the frame-
work developed here is at Layer 3: Grid programming, and relies on Layer 2: Grid
middleware infrastructure. In the previous section, we presented some Grid infrastruc-
tures and have identified some missing requirements. We also introduced P2P concepts
and argued that P2P and Grids have similar goals: managing and providing a large pool
of dynamic resources.

With all these observations, we now define requirements for a P2P infrastructure
that is able to manage and provide a large number of computational resources. In other
words, we propose a new Grid infrastructure relying on P2P concepts.
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Specific Grid requirements We previously introduced several challenges for Grids.
Here, we outline how our infrastructure addresses those challenges:

• Distribution: the infrastructure has to take into account significant latency and
bandwidth reduction. To cover these issues, the P2P infrastructure may use asyn-
chronous communication between peers. Thus, peers are not blocked while ex-
changing messages.

• Deployment: the large amount of heterogeneous resources complicate the deploy-
ment task in terms of configuration and connection to remote resources. All deploy-
ments problems must be hidden by the infrastructure. Also, the infrastructure has
to provide a simple and unified way for acquiring resources.

• Multiple administrative domains: the infrastructure has to be flexible and easily
adaptable to handle different management and security policies.

• Scalability: P2P already demonstrated the capabilities of scalability through a
decentralized overlay network.

• Heterogeneity: using Java as programming language simplifies the problem of het-
erogeneity.

• High performance: resources are managed by the infrastructure, but once applica-
tions acquire them, the infrastructure has to provide full control to the application,
e.g. communications between two application nodes may not be handle by the in-
frastructure but must be direct.

• Dynamicity: the topology of Grids is dynamic, resources are volatiles. Hence, the
infrastructure must be dynamic.

• Programming model: the access to resources and the P2P infrastructure has to be
as easy as possible for user.

• Fault-tolerance: the infrastructure has to handle resource failure in order to do
fault the whole infrastructure.

Now, we detail more P2P related requirements.

Specific P2P requirements In this thesis, P2P follows the definition of Pure Peer-to-
Peer as defined by Definition 2.2.3, meaning that it focuses on sharing resources, decen-
tralization, and stability. The most important point of that definition is that a single
arbitrarily chosen peer can be removed from the network without having the network
suffering any loss of network service. However, removing a peer of the network leads to
a linear degradation of the service provided by the network, e.g. having n less peers has
effect of having n fewer available computational resources to improve the application
speed.

The objective here is to provide a Grid infrastructure for computations. Existing
Grid infrastructures do not address the dynamic aspect of virtual organizations. Also,
for most of them it is harder to combine several different Grids into a bigger one. On the
other hand, P2P infrastructures are designed to manage dynamicity and share similar
objectives to Grids, which is providing virtual organizations. However, P2P are mono-
application and P2P architectures vary according to their for different goals. The first
generation allowed only master-worker applications without communication between
workers; the second and the third generation are widely used for file sharing.
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Although DHTs avoid flooding, this approach cannot be used here. The main goal of
our infrastructure is to provide computational nodes to applications, where applications
ask for a desired number of nodes and then the infrastructure broadcasts the request
to find any available nodes to satisfy the request. Here queries do not target a specified
resource, such as data identified by a hash, but instead try to find a number of available
peers. In addition, DHTs earned some criticisms for their high maintenance cost with
high churn [CHA 03], where the system has to discover failures, re-organize lost data
and pointers, and then manage data re-organization when the failed peers return to the
network. Unlike DHTs, our infrastructure is an unstructured P2P network.

Like other unstructured approaches we propose that each peer maintains a list of
acquaintances and also some modifications to the basic flooding protocol to make the
system scalable. Unlike all these systems we do not focus on data sharing, instead we
propose some modifications in order to adapt the flooding to find available nodes for
computation.

Unlike global computing platforms (BOINC/SETI@home and XtremWeb), Condor,
and OurGrid, we do not provide any job schedulers. Applications connect to our P2P
infrastructure and request nodes. Nodes are then returned in a best-effort way by
the infrastructure. Unlike the others, applications dynamically interact with the in-
frastructure to obtain new nodes. The infrastructure works as a dynamic pool of re-
sources. Once applications get nodes, there are no restrictions on how they are used.
This property allows applications to communicate easily in arbitrary ways. Applica-
tion communications are not handled by our infrastructure, unlike other P2P networks.
Most other P2P infrastructures require the overlay network to be used for all commu-
nications. This limitation is highlighted by JXTA, which has very poor communication
performance [HAL 03]. With our approach, applications can freely use different com-
munications transport layers.

One of the problems raised by P2P infrastructures is the issue of crossing firewalls.
Many choose to disallow communications, or another strategy is to always use the same
way (worker to master), and even routing communications between peers. Our infras-
tructure must address this issue. A solution may to use direct communication between
peers when it is allowed and to rely on forwarders at the level of firewalls.

Summary of requirements Infrastructure requirements:

• Asynchronous communication between peers

• Simple and unified way for acquiring resources

• Flexible and easily adaptable to handle sites

• Heterogeneity: Java and the inclusion of interface with most used Grid middle-
wares/infrastructures/schedulers

• Resources usability: applications must have the full usage of acquired resources

• Dynamicity: unstructured P2P network

• Crossing firewalls

With all these requirements, we propose, in this thesis, a Grid infrastructure based
on a P2P architecture. This infrastructure is more than a common Grid infrastructure
because it may include resources from desktops, clusters, and other Grid infrastruc-
tures. In other words, we propose a meta-Grid infrastructure.
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Furthermore, our P2P infrastructure is the bottom layer, Grid infrastructure, of our
branch-and-bound framework.

2.3 Branch-and-Bound: Principles and Positioning

The branch-and-bound algorithm is a technique for solving search problems and NP-
hard optimization problems, such as the traveling salesman problem [LAW 85] or job
shop scheduling problem [APP 91]. Branch-and-bound aims to find the optimal solution
and to prove that no better one exist.

In this section, we define branch-and-bound and especially parallel branch-and-
bound as applied to Grids. Then, we position our contribution with respect to branch-
and-bound systems.

2.3.1 Principles of branch-and-bound algorithm

The branch-and-bound (B&B) method was first introduced by A. H. Land and A. G. Doig
in 1960 [LAN 60] for solving discrete programming problems. The discrete optimization
problems are problems in which the decision variables assume discrete values from a
specified set; when this set is a set of integers, it is an integer programming problem.
In 1965, the B&B technique was improved by R. J. Dakin [DAK 65] for solving integer
programming problem.

B&B is also used to solve combinatorial optimization problems [PAP 98]. The combi-
natorial optimization problems are problems of choosing the best combination out of all
possible combinations.

From the work of [LAN 60, DAK 65, PAP 98], we define B&B as:

Definition 2.3.1 Branch-and-bound is an algorithmic technique for solving discrete and
combinatorial optimization problems. This technique proceeds to a partial enumeration
of all feasible solutions and returns the guaranteed optimal solution.

In other words, B&B is a technique to find the optimal solution by keeping the best
solution found so far. If a partial solution cannot improve the best, it is abandoned. B&B
guarantees that the find solution is the best and none are better.

B&B algorithm proceeds to split the original problem into sub-problems of smaller
sizes, i.e. the set of feasible solutions is partitioned. Then, the objective function com-
putes the lower/upper bounds for each sub-problem. The objective function, or quality
function, or even goal function, can be defined as [ATA 99]:

Definition 2.3.2 The objective function constitutes the implementation of the problem
to be solved (also referred to as search space). The input parameter is the search space.
The output is the objective value representing the evaluation/quality of the individual.
In a multi-criteria optimization problem, the objective function returns multiple objective
values. The objective value is often referred to as fitness.

Thus, for an optimization problem the objective function determines how good a so-
lution is, e.g. the total cost of edges in a solution to a traveling salesman problem.
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B&B organizes the problem as a tree of sub-problems, called search tree or solution
tree, i.e. the search tree is a representation of the search space. The root node of this tree
is the original problem and the rest of the tree is dynamically constructed by sequencing
two operations: branching and bounding.

Branching consists in recursively splitting the original problem in sub-problems.

Each node of the tree is a sub-problem and has as ancestor a branched super-problem.
Thereby, the original problem is the parent of all sub-problems: it is named the root
node.

Bounding computes for each tree node the lower/upper bounds.
The upper bound is the worst value for the potential optimal solution, and the lower

bound is the best value. Therefore, if V is the optimal solution for a given problem and
f(x) the objective function of this problem, then lower bound ≤ f(V ) ≤ upper bound.

Furthermore, a global optimal bound is dynamically maintained for the whole tree.
The optimal bound can be the best current lower or upper bound, depending on whether
the problem aims to maximize or to minimize the solution. In this thesis, we assume
that problems minimize the function. Hence, for us the global optimal bound is a a
global upper bound (GUB), which is the best upper bound of all tree’s nodes.

Thus, nodes with a lower bound higher than GUB can be eliminated from the tree
because branching these sub-problems does not lead to the optimal solution, this action
is called pruning.

The pruning operation helps to reduce the size of the space search to a computa-
tionally manageable size. Pruning removes only branches, where we are sure that the
optimal solution cannot be at any one of these nodes. Thus, B&B is not a heuristic, or
approximating procedure, but it is an exact optimizing procedure that finds an optimal
solution.

Note that the GUB changes during the exploration of the search space, because the
search tree is dynamically generated. Thus, GUB is improved until the optimal solution
is found. Figure 2.7 shows an example of search tree.

Termination condition The last point about B&B is the termination condition. The ter-
mination happens when the problem is solved, i.e. the optimal solution is found. B&B
terminates when all sub-problems have been explored or eliminated (pruned).

In the next section, we illustrate the B&B algorithm with a concrete example.

2.3.1.1 Solving the traveling salesman problem with branch-and-bound

The traveling salesman problem [LAW 85] (TSP) is a problem in combinatorial opti-
mization. TSP is also member of the NP complete [PAP 77] class. In this section, we
briefly show how to solve TSP with branch-and-bound.

The TSP problem Given a number of cities and the costs of traveling from any city to
any other city, what is the cheapest round-trip route that visits each city exactly once
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Branching: split in sub-problems 

Bounding: compute local lower/upper bounds

Pruning: local lower bound higher than the global one 

Not generated and explored parts of the tree

Figure 2.7: A branch-and-bound search tree example

and then returns to the starting city?

In other words, TSP consists in figuring out a Hamiltonian cycle with the least
weight. A Hamiltonian cycle [ORE 60] is a cycle in an undirected graph which visits
each vertex exactly once and also returns to the starting vertex.

The size of the solution space is (n−1)!
2 , where n is the number of cities. This is also

the total number of cycles with n different nodes that one can form in a complete graph
of n nodes.

In this example, we deal with the symmetric TSP. Symmetric TSP is defined as fol-
lows: for any two cities A and B, the distance from A to B is the same as that from B to
A.

Figure 2.8 shows the complete graph with five cities that we use in this example.
The start and finish city is A.

This problem has to minimize an objective function. In order to simplify this ex-
ample, we assume that there is a method for getting a lower bound on the cost of any
solution among those in the set of solutions represented by some subset. If the best
solution found so far costs less than the lower bound for this subset, we do not need to
explore this subset at all.

Let S be some subset of solution. Let:

• L(S) = a lower bound on the cost of any solution belonging to S.

• C(route) = the cost of the given route.

• BS = cost of the best solution found so far.

• If BS ≤ L(S), there is no need to explore S because it does not contain any better
solution.

• If BS > L(S), then we need to explore S because it may contain a better solution.
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Figure 2.8: TSP example of a complete graph with five cities

Figure 2.9 shows an example of a binary solution tree for this example of TSP. This
is one way to explore the solution space of this given TSP instance.

All routes

routes with AB routes without AB

routes with
AB and AC

routes with
AB but not AC

routes with
AC but not AB

routes with not AC 
and not AB

routes with
AB, AD and not AC

routes with
AB, not AC and

not AD

routes with
AB, AC and not AD

Figure 2.9: A solution tree for a TSP instance

Figure 2.10 shows branch-and-bound applied to this instance of TSP. When the
branching is done, the lower bounds of both children is computed. If the lower bound for
a child is as high or higher than the lowest cost found so far for BS, that child is pruned
and its descendants are not constructed.

2.3.1.2 Parallel branch-and-bound

Because of the large size of typical handled problems (enumeration size and/or NP-hard
class), finding an optimal solution for a problem can be impossible on a single machine.
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Figure 2.10: Branch-and-bound applied to a TSP instance

However, many studies show that it is relatively easy to design parallel B&B algorithms.
The survey [GEN 94] reports three main approaches in designing parallel B&B al-

gorithms:

1. Parallelism of type 1 (or node-based) introduces parallelism when performing
the operations on generated sub-problems. For instance, it consists of executing
the bounding operation in parallel for each sub-problem to accelerate the execu-
tion.
Thus, this type of parallelism has no influence on the general structure of the B&B
algorithm and is particular to the problem to be solved.

2. Parallelism of type 2 (or tree-based) consists of building the solution tree in par-
allel by performing operations on several sub-problems simultaneously.
Hence, this type of parallelism may affect the design of the algorithm.

3. Parallelism of type 3 (or multisearch) implies that several solution trees are gen-
erated in parallel. The trees are characterized by different operations (branching,
bounding, and pruning), and the information generated when building one tree
can be used for the construction of another.
Like approach 2, this type of parallelism may affect the design of the algorithm.

More recently, another survey [CRA 06] completes and updates this previous one.
The survey reports that approaches of type 1 and 2 are now considered as classics.
Other strategies are also described, such as domain decomposition, which decomposes
the feasible domain and uses B&B to address the problem on each of the components of
the partition.
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These strategies are not mutually incompatible. For instance, when problem in-
stances are particularly large and hard, several strategies may be combined to improve
the problem’s resolution speedup.

From all these approaches, the tree-based strategy (type 2) is the one that has had
the most important research effort. Issues related to this strategy are well defined
by [AUT 95]:

• Tasks are dynamically generated.

• The solution tree is not known beforehand.

• No part of the tree may be estimated at compilation.

• Task allocations to processors must be done dynamically.

• Distributing issues, such as load-balancing and sharing information.

Much previous work deals with parallel B&B as reported in [GEN 94, CRA 06]. The
following some examples of frameworks for parallel B&B:

• PUBB [SHI 95]

• BOB++ [CUN 94]

• PPBB-Lib [TSC 96]

• PICO [ECK 00]

• MallBa [ALB 02]

• ZRAM [BRÜ 99]

• ALPS/BiCePS [XU 05]

• Metacomputing MW [GOU 00b]

• Symphony [RAL 04]

These frameworks differ from the kind of problems that they are able to solve, type
of parallelism, programming language API, and targeted execution machines. Table 2.3
reports these differences.

These main differences are organized as follow: algorithms, parallel architecture,
and targeted machines.

Algorithms represents the B&B technique used by the framework, low-level is a divide-
and-conquer approach applied to explore the solution tree, basic B&B is the tree-based
approach as previously described, mixed-integer linear programming (LP) uses linear
programming for bounding, and branch&price&cut are a specialization of B&B for solv-
ing mixed-integer linear problems.

Parallelization is the parallel architecture that implements frameworks, master-worker
(see Definition 2.2.1), hierarchical master-worker is a master-worker with sub-masters
to manage scalability, and single program multiple data (SPMD) is a parallelism tech-
nique that consists to have the same subroutine running on all processors but operate
on different data.
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Table 2.3: Summary of main parallel branch-and-bound frameworks

Frameworks Algorithms Parallelization Machines
PUBB Low-level

Basic B&B
SPMD Cluster/PVM

BOB++ Low-level
Basic B&B

SPMD Cluster/MPI

PPBB-Lib Basic B&B SPMD Cluster/PVM
PICO Basic B&B

Mixed-integer LP
hier. master-worker Cluster/MPI

MallBa Low-level
Basic B&B

SPMD Cluster/MPI

ZRAM Low-level
Basic B&B

SPMD Cluster/PVM

ALPS/BiCePS Low-level
Basic B&B
Mixed-integer LP
Branch&Price&Cut

hier. master-worker Cluster/MPI

Metacomputing MW Basic B&B master-worker Grids/Condor
Symphony Mixed-integer LP

Branch&Price&Cut
master-worker Cluster/PVM

Machines all these frameworks target clusters, but they differ on the approach to
share the memory between distributed processes. Some of them use MPI [GRO 96]
that is a library to send message between processes, and the others use PVM [GEI 94]
that provides a virtual memory accessible by all processes. Only Metacomputing MW is
based on a different middleware, Condor [CON 93], that enables use of Grids.

Despite the plentiful resources made available by grids, there has been limited work
done on parallel B&B in this domain [GOU 00b]. In the context of this thesis, one of the
objectives is to provide a B&B framework adapted to Grids. The next section complete
this related work on parallel B&B with frameworks focused on Grids.

2.3.2 Overview of existing branch-and-bound framework for Grids

Grids gather large amount of heterogeneous resources across geographically distributed
sites to virtual organization. Resources are usually organized in clusters, which are
managed by different administrative domains (labs, universities, etc.). Thanks to the
huge number of resources Grids provide, they seem to be well adapted for solving very
large problems with B&B. Nevertheless, Grids introduce new challenges such as deploy-
ment, heterogeneity, fault-tolerance, communication, and scalability.

As we have showed in the previous section, there are numerous frameworks for par-
allel B&B, but only few of them target Grid environments [GOU 00b]. However, some
Grid programming paradigms, such as farm skeleton and divide-and-conquer, can also
be used to implement B&B for Grids, even if they are not originally made for B&B.
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2.3.2.1 Branch-and-bound

Much of the work reported by the previous section is based on a centralized approach
with a single manager which maintains the whole tree and hands out tasks to workers.
This kind of approach clearly does not scale for Grid environments. Furthermore, many
of these works focus on parallel search strategies. For example, in the work of Clausen
et al. [CLA 99], which proposes to compare best-first search and lazy depth-first search.

Aida et al. [AID 03] present a solution based on hierarchical master-worker to solve
scalability issues. Workers do branching, bounding, and pruning on sub-problems, which
are represented by tasks. The supervisor handles the sharing of the best current upper
bound, the root master. Supervisor and sub-masters gather results from workers and
are in charge of hierarchically updating the best upper bound on all workers.

In [AID 05] Aida and Osumi propose a study of the work in [AID 03]. They imple-
ment their hierarchical master-worker framework using GridRPC middleware [SEY 02],
Ninf-G [TAN 03], and Ninf [SAT 97]. Moreover, the authors discuss the granularity of
tasks, notably when tasks are fine-grain the communication overhead is too high com-
pared to the computation of tasks.

The work of Iamnitchi and Foster [IAM 00] also proposes a solution to do B&B over
Grids. Their approach differs from others because it is not based on the master-worker
paradigm, but on a decentralized architecture that manages resources through a mem-
bership protocol. Each process maintains a pool of problems to solve. When the pool is
empty, the process asks for work from other processes. The sharing of the best upper
bound is handled by circulating a message among processes. The fault-tolerance issue
is addressed by propagating all completed sub-problem to all processes. Their approach
may result in significant overhead, in terms of both duplicated work and messages.
Typical problems solved with B&B are often very difficult, sometimes taking weeks of
computation on a dedicated cluster to solve single problem. For that reason, the over-
head resulting from duplicating work and messages must be considered.

Mezmaz et al. [MEZ 07a, MEZ 07b] present a load-balancing strategy for Grid based
B&B algorithm. Their approach is based on the master-worker paradigm. In order to
avoid the bottleneck that can result from the master, they propose to manage intervals
instead of search tree nodes. In other words, the master keeps unexplored intervals and
communicates exploration intervals to workers. The tree is explored using the depth-
first search strategy, and they apply a particular numbering of the tree nodes, allowing
a very simple description of the work units distributed during the exploration. Such de-
scription optimizes the communications involved by the huge amount of load-balancing
operations. When a worker improves the upper bound, the new value is sent to the
master. With this approach, they were the first to exactly solve the Taillar’s instance
Ta056 [TAI 93] of the flow-shop problem.

ParallelBB [BEN 07] is a parallel B&B algorithm for solving optimization problems.
This work is also based on the master-worker paradigm, and it has for originalities to be
implemented with ProActive and to use the peer-to-peer infrastructure proposed in this
thesis (see Chapter 3). Like the B&B presented in our work (see Chapter 4), ParallelBB
proposes direct communications between workers in order to avoid master bottleneck.
Hence, workers directly share the upper bound. Unlike this thesis work, Grid related
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communication issues between workers are not addressed. However, the use of ProAc-
tive for the implementation and of our peer-to-peer infrastructure validites of our choice
of using a peer-to-peer approach for managing Grid infrastructures.

ParadisEO [CAH 03] is an open source framework for flexible parallel and distributed
design of hybrid meta-heuristics. Moreover, it supplies different natural hybridization
mechanisms mainly for meta-heuristics including evolutionary algorithms and local
search methods. All these mechanisms can be used for solving optimization problem.
The Grid version of ParadisEO is based on the master-worker paradigm. ParadisEO
splits the optimization problem into sub-tasks to solve. Then, the task allocation is
handled by MW [GOU 00a] a tool for scheduling master-worker applications over Con-
dor [LIT 88], which is a Grid resource manager. ParadisEO just provides mechanisms
for searching algorithms.

2.3.2.2 Skeletons

The common architecture used for B&B on Grids is the master-worker one. A master di-
vides the entire search tree in a set of tasks and then distributes these tasks to workers.
For parallel programming, the master-worker pattern is called farm skeleton [COL 91].
Muskel [DAN 05] is a Java skeleton framework for Grids that provide farm.

Skeleton frameworks usually provide task allocation and fault-tolerance. Thus, skele-
tons seem well adapted for implementing B&B for Grids. Users have just to focus on
the implementation of the problem to solve while all other issues related to the Grid and
task management are handled by the framework. Nevertheless, tasks in farm skeletons
cannot share data, such as a global upper bound to prune more promising branches of
the search tree so as to more rapidly find the optimal solution.

In addition, another skeleton that fits the B&B algorithm is the divide-and-conquer
skeleton. This skeleton allows dynamic splitting of task, i.e. branching, but like farm
skeleton it is not possible to share the global upper bound between task.

2.3.2.3 Divide-and-conquer

Conceptually, the B&B technique fits the divide-and-conquer paradigm. The search tree
can be divided into sub-trees, and each sub-tree is then assigned to an available compu-
tational resource. This is done recursively until the task is small enough to be solved
directly.

Satin [NIE 04] is a system for divide-and-conquer programming on Grid platforms.
Satin expresses divide-and-conquer parallelism entirely in the Java language itself,
without requiring any new language constructs. Satin uses so-called marker interfaces
to indicate that certain method invocations need to be considered for parallel execution,
called "spawned". A mechanism is also needed to synchronize with spawned method
invocations.

Satin can be used directly to implement B&B. Thus, users can mark branching meth-
ods to be executed in parallel. Satin is in charge of distributing sub-problems through
Grids. Nevertheless, Satin does not provide any mechanisms for sharing a global upper
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bound and more generally no mechanism for communication between parallel executed
sub-problems.

2.3.3 Requirements for Grid branch-and-bound

In the context of this thesis, we propose a parallel B&B framework for Grids. To moti-
vate this, the framework must address all of the challenges presented by Grids, as listed
in Section 2.1.

In addition to the Grid challenges, our framework must take into account analysis
the experience, capabilities, and shortcomings of B&B frameworks and parallel B&B
principles as documented in the previous section.

With these considerations, this section defines requirements for Grid B&B that our
framework must fulfill.

Specific Grid requirements We previously introduced some key Grid challenges. Sev-
eral of these challenges are in the Grid middleware infrastructure layer (see Layer 2 in
Section 2.1) which are addressed directly by the incorporation of a P2P infrastructure,
as described in Section 2.2 and will be returned to in detail in Chapter 3. Remaining
challenges are in Layer 3, Grid programming, and must be treated by the B&B frame-
work.

Grid challenges that the framework has to address:

• Distribution: involves significant latency and bandwidth reduction. Hence, the
framework must hide these issues from users. A solution may be to use asyn-
chronous communications between distributed processes. Asynchronous commu-
nications protect against network problems because processes are not blocked dur-
ing message exchanges.

• Deployment: the P2P infrastructure provides a solution for deployment issues.
Resource configuration, connection, etc. are hidden by the infrastructure. Finally,
application deployment may be facilitating by using a Grid middleware, such as
ProActive (see next section).

• Multiple administrative domains: this point is also solved by the P2P infrastruc-
ture.

• Scalability: this is one of the most important issues that the framework has to
handle. The framework must be able to manage a large number of resources. In
the related work, previously presented, we analyzed several B&B frameworks for
Grids, and most of them use the hierarchical master-worker approach for scalabil-
ity.

• Heterogeneity: relying on a Java Grid middleware can answer this point.

• High performance: the framework has to efficiently use parallelism and especially
communications in order to get the maximum value from the large pool of re-
sources provided by Grids.

• Dynamicity and Fault-tolerance: the acquisition of new resources is handle by the
P2P infrastructure. However, in Grids faults, failures, maintenance, etc. are com-
mon; thus the framework has to be fault-tolerant.
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• Programming model: the framework must hide all Grid issues and ideally all dis-
tribution & parallelism complexities.

Specific B&B requirements In this thesis, the B&B framework aims at helping users
to solve problems and in particular, combinatorial optimization problems.

In the previous section, we have showed how many existing frameworks use the
master-worker approach. Conceptually, the master-worker paradigm, based on Defi-
nition 2.2.1, fits B&B. The optimization problem to solve is represented as a dynamic
set of tasks. A first task, which is the root node of the problem search tree, is passed
to the master and branching is performed. The result is a new set of sub-tasks, or
sub-problems, to branch and bound. Thereby, a master manages the sub-problem dis-
tribution to workers, and workers do branching and bounding operations. Both master
and workers can handle pruning.

In addition, master-worker is well adapted to implement the three main approaches
for designing parallel B&B; even if in this thesis we focus more on the trees because
related problems have already been identified [AUT 95], thus it is easier to adapt this
approach to Grids.

Even in parallel, generating and exploring the entire search tree leads to significant
performance issues. Parallelism allows branch and bound a large number of feasible
regions at the same time, but the pruning action seriously impacts the execution time.
The efficiency of the pruning operation depends on the global upper bound (GUB) up-
dates. The more GUB is close to the optimal solution, the more sub-trees are pruned.
The improvement of GUB is determined by how the tree is generated and explored for
a given problem. The exploration technique of the search tree for B&B is the key to
rapidly solve problems. Therefore, a framework for Grid B&B has to propose several
exploration strategies such as breadth-first search or depth-first search.

Other issues related to the pruning operation in Grids are concurrency and scalabil-
ity. All workers must share common global data, which for B&B is only the GUB. GUB
has multiple parallel accesses in read (get the value) and write (set the value) modes. A
solution for sharing GUB is to maintain a local copy on all workers and when a better
upper bound than GUB is found the worker broadcasts the new value to others.

In addition, for Grid environments, which are composed of hundreds of heteroge-
neous machines and which are managed by different administrative domains, the prob-
ability of having faulty nodes during a long execution is high. Therefore, a B&B for
Grids has to manage fault-tolerance. A solution may for instance be that the master
handles worker failures and the state of the search tree is frequently serialized to per-
sistent storage.

Summary of requirements In this thesis we present Grid’BnB, a parallel B&B frame-
work for Grids. Grid’BnB aims to hide Grid difficulties from users. Especially, fault-
tolerance, communication, and scalability problems are addressed by Grid’BnB. The
framework is built on a master-worker approach and provides a transparent commu-
nication system between tasks. Local communications between processes are used to
optimize the exploration of the problem solution space. Grid’BnB is implemented in
Java within the ProActive [BAD 06] Grid middleware and also relies on the P2P infras-
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tructure. The ProActive middleware and infrastructure provide a flexible and efficient
deployment framework for Grids, and allow asynchronous communications.

Framework design/architecture requirements:

• Asynchronous communications

• Hierarchical master-worker

• Dynamic task splitting

• Efficient parallelism and communications:

– organizing workers in groups to optimize inter-cluster communications

– sharing the current best lower/upper bound

– communication between workers

• Fault-tolerance

Users requirements:

• Hidden parallelism and Grid difficulties

• Combinatorial optimization problems

• Ease of deployment multiple administrative domains, heterogeneity, acquisition
of new resources (dynamicity)

• Principally tree-based parallelism strategy, but also may use others

• Implementing and testing search strategies

• Focus on objective function

With all these requirements for parallel B&B, and more specifically on Grid environ-
ments, we propose, in this thesis, Grid’BnB a complete Java API for using parallel B&B
technique with Grids.

We also present a mechanism based on communications between workers to share
GUB. Thereafter, we propose a system to dynamically organize workers in communica-
tion groups. This organization aims to control worker topology to maximize scalability
(more details in Chapter 4 and Section 6.2).

2.4 Context: ProActive Grid middleware

ProActive is an open source Java library for Grid computing. It allows concurrent and
parallel programming and offers distributed and asynchronous communications, mobil-
ity, and a deployment framework. With a small set of primitives, ProActive provides
an API allowing the development of parallel applications, which may be deployed on
distributed systems and on Grids.

The active object model and the ProActive library are used as a basis in this the-
sis for developing a peer-to-peer infrastructure, a branch-and-bound framework, and
performing large-scale experiments.
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Figure 2.11: Seamless sequential to multithreaded to distributed objects

2.4.1 Active objects model

ProActive is based on the concept of an active object, which is a medium-grained entity
with its own configurable activity.

A distributed or concurrent application built using ProActive is composed of a num-
ber of medium-grained entities called active objects (Figure 2.11). Each active object
has one distinguished element, the root, which is the only entry point to the active ob-
ject. Each active object has its own thread of control and is granted the ability to decide
in which order to serve the incoming method calls that are automatically stored in a
queue of pending requests. Method calls sent to active objects are asynchronous with
transparent future objects and synchronization is handled by a mechanism known as
wait-by-necessity [CAR 93]. There is a short rendezvous at the beginning of each asyn-
chronous remote call, which blocks the caller until the call has reached the context of the
callee. All of this semantics is built using meta programming techniques, which provide
transparency and the ground for adaptation of non-functional features of active objects
to various needs.

Explicit message-passing programming based approaches were deliberately avoided:
one aim to enforce code reuse by applying the remote method invocation pattern, instead
of explicit message-passing.

The active object model of ProActive guaranties determinism properties and was
formalized with the ASP (Asynchronous Sequential Processes) calculus [CAR 04].

2.4.2 The ProActive library: principles, architecture, and usages

The ProActive library implements the concept of active objects and provides a deploy-
ment framework in order to use the resources of a Grid.

2.4.2.1 Implementation language

Grids gather large amount of heterogeneous resources, different processor architectures
and operating systems. In this context, using a language which relies on a virtual ma-



38 Chapter 2. Principles and Positioning

chine allows maximum portability. ProActive is developed in Java, a cross-platform
language and the compiled application may run on any operating system providing a
compatible virtual machine. Moreover, ProActive only relies on standard APIs and does
not use any operating-system specific routines, other than to run daemons or to interact
with legacy applications. There are no modifications to the JVM nor to the semantics of
the Java language, and the bytecode of the application classes is never modified.

2.4.2.2 Implementation techniques

ProActive relies on an extensible meta-object protocol architecture (MOP), which uses
reflective techniques in order to abstract the distribution layer, and to offer features
such as asynchronism or group communications.

A

proxy

reified 
invocation

network body

stub_B B

meta level

base level

features meta objects

service thread

root object

passive objects

...

Figure 2.12: Meta-object architecture

The architecture of the MOP is presented in Figure 2.12. An active object is con-
cretely built out of a root object (here of type B), with its graph of passive objects. A
body object is attached to the root object, and this body references various features meta-
objects, with different roles. An active object is always indirectly referenced through a
proxy and a stub which is a sub-type of the root object. An invocation on the active ob-
ject is actually an invocation on the stub object, which creates a reified representation
of the invocation, with the method called and the parameters, and this reified object is
given to the proxy object. The proxy transfers the reified invocation to the body, possi-
bly through the network, and places the reified invocation in the request queue of the
active object. The request queue is one of the meta-objects referenced by the body. If
the method returns a result, a future object is created and returned to the proxy, to the
stub, then to the caller object.

The active object has it own activity thread, which is usually used to pick-up reified
invocations from the request queue and serve them, i.e. execute them by reflection on
the root object. Reification and interception of invocations, along with ProActive’s cus-
tomizable MOP architecture, provide both transparency and the ground for adaptation
of non-functional features of active objects to fit various needs. It is possible to add cus-
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tom meta-objects which may act upon the reified invocation, for instance for providing
mobility features.

Active objects are instantiated using the ProActive API, by specifying the class of the
root object, the instantiation parameters, and a possible location information:

// instantiate active object of class B on node1 (a possibly remote location)
B b = (B) ProActive.newActive(''B'', new Object[] {aConstructorParameter}, node1);

// use active object as any object of type B
Result r = b.foo();

// possible wait-by-necessity
System.out.println(r .printResult()) ;

2.4.2.3 Communication by messages

In ProActive, the distribution is transparent: invoking methods on remote objects does
not require the developer to design remote objects with an explicit remoting mechanism
(like Remote interfaces in Java RMI). Therefore, the developer can concentrate on the
business logic as the distribution is automatically handled and transparent. Moreover,
the ProActive library preserves polymorphism on remote objects (through the reference
stub, which is a subclass of the remote root object).

Communications between active objects are realized through method invocations,
which are reified and passed as messages. These messages are serializable Java objects
which may be compared to TCP packets. Indeed, one part of the message contains
routing information towards the different elements of the library, and the other part
contains the data to be communicated to the called object.

Although all communications proceed through method invocations, the communica-
tion semantics depends upon the signature of the method, and the resulting communi-
cation may not always be asynchronous.

Three cases are possible: synchronous invocation, one-way asynchronous invocation,
and asynchronous invocation with future result.

• Synchronous invocation:

– the method returns a non reifiable object: primitive type or final class:
public boolean foo()

– the method declares a thrown exception:
public void bar() throws AnException

In this case, the caller thread is blocked until the reified invocation is effectively
processed and the eventual result (or exception) is returned. It is fundamental to
keep this case in mind, because some APIs define methods which throw exceptions
or return non-reifiable results.

• One-way asynchronous invocation: the method does not throw any exception and
does not return any result:
public void gee()

The invocation is asynchronous and the process flow of the caller continues once
the reified invocation has been received by the active object (in other words, once
the rendezvous is finished).
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• Asynchronous invocation with future result: the return type is a reifiable type, and
the method does not throw any exception:
public MyRei�ableType baz()

In this case, a future object is returned and the caller continues its execution flow.
The active object will process the reified invocation according to its serving pol-
icy, and the future object will then be updated with the value of the result of the
method execution.

If an invocation from an object A on an active object B triggers another invocation
on another active object C, the future result received by A may be updated with another
future object. In that case, when the result is available from C, the future of B is au-
tomatically updated, and the future object in A is also update with this result value,
through a mechanism called automatic continuation [CAR ].

2.4.2.4 Features of the library

As stated above, the MOP architecture of the ProActive library is flexible and config-
urable; it allows the addition of meta-objects for managing new required features. More-
over, the library also proposes a deployment framework, which allows the deployment
of active objects on various infrastructures.

The features of the library are represented in Figure 2.13.

ASP formal model

Multiple network 
protocols Web services File transfer

Deployment framework Peer-to-PeerMonitoring

Mobility Load balancing SecurityFault tolerance

Distributed garbage 
collector

Component-based 
programming

Groups

Asynchronism

Exception management Legacy code wrapping OOSPMD
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Figure 2.13: Layered features of the ProActive library

The active object model is formalized through the ASP calculus [CAR 05b], and
ProActive may be seen as an implementation of ASP. The library may be represented in
three layers: programming model, non-functional features, and deployment facilities.

The programming model consists of the active objects model which offer asynchronous
communications, typed group communications [BAD 02], and the object-oriented SPMD
programming paradigm [BAD 05]. In addition to the standard object oriented program-
ming paradigm, ProActive also proposes a component-based programming paradigm,
by providing an implementation [BAU 03] of the Fractal component model [BRU 02]
geared at Grid computing. In the context of this thesis, we propose a new programming
model for ProActive: a branch-and-bound framework.
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Non-functional features include a transparent fault-tolerance mechanism based on
a communication-induced check-pointing protocol [BAU 05], a security framework for
communications between active objects [ATT 05], migration capabilities for the mobility
of active objects [BAU 00], a mechanism for the management of exceptions [CAR 05a], a
complete distributed garbage collector for active objects [CAR 07b], and a mechanism for
wrapping legacy code, notably as a way to control and interact with MPI applications.

The deployment layer includes a deployment framework [BAU 02]; it is detailed in
Section 6.1, and it allows the creation of remote active objects on various infrastructures.
A scheduler is also proposed to manage the deployment of jobs. The load-balancing
framework uses the migration capabilities to optimize the placement of the distributed
active objects [BUS 05]. In the context of this thesis, we propose a new deployment
infrastructure for ProActive: peer-to-peer infrastructure.

In the communication layer several protocols are provided for the communication
between active objects: Java RMI as the default protocol, HTTP, tunneled RMI. It is
also possible to export active objects as web services, which can then be accessed using
the standard SOAP protocol. A file transfer mechanism is also implemented; it allows
the transfer of files between active objects, for instance to send large data input files or
to retrieve results files [BAU 06].

2.5 Conclusion

In this chapter, we positioned the work of this thesis in the context of Grid computing.
We showed that both communities, peer-to-peer and Grid, share the same goal: pooling
and coordinating use of large sets of distributed resources. In addition, we demonstrated
the validity and adequacy of using a peer-to-peer approach to provide a Grid infrastruc-
ture. We also justified requirements needed by our branch-and-bound framework for
Grids. We then introduced the ProActive Grid middleware.

This thesis focuses on the Grid middleware infrastructure layer, with the peer-to-
peer infrastructure, and on the upper layer, which is Grid programming, with the branch-
and-bound framework. This work addresses all Grid challenges that we pointed out:
distribution, deployment, multiple administrative domains, scalability, heterogeneity,
high performance, dynamicity, and programming model.

We argue that Grid infrastructures have to be dynamic, especially to support the in-
clusion of new sites in the Grid. Hence, we propose a peer-to-peer infrastructure to share
computational resources. In this thesis, we also propose a branch-and-bound framework
adapted to Grids. Finally, ProActive is a strong Grid middleware and provides features
that help for Grid development, and we augment ProActive with this thesis work.



42 Chapter 2. Principles and Positioning



Chapter 3

Desktop Peer-to-Peer

In this chapter, we present the first part of this thesis contribution, which is an infras-
tructure for managing Grids [CAR 07a]. The proposed infrastructure is indeed based on
a peer-to-peer architecture. The main goal of this infrastructure is to manage a large-
scale pool of resources; and owing to the infrastructure, applications have an easy access
to these resources.

In chapter 2, we identified the specificities of Grid computing. Moreover, we argued
that Grid and peer-to-peer share the same goal, and thus peer-to-peer architectures can
be used as infrastructures for Grids.

We introduce in details the proposed infrastructure and report experiments on a lab-
wide Grid. With which we have achieved a computation record by solving the n-queens
problem for 25 queens. Large-scale experiments are reported in Chapter 5.

3.1 Motivations and objectives

These last years, computing Grids have been widely deployed around the world to pro-
vide high performance computing tools to research and industrial fields. Those Grids
are generally composed of dedicated clusters. In parallel, an approach for using and
sharing resources called Peer-to-Peer (P2P) networks has also been deployed. In P2P
networks, we can discern two categories: Edge Computing or Global Computing, such
as SETI@home [AND 02], which takes advantage of machines at the edges of the Inter-
net; and P2P files sharing, such as Gnutella [GNU 00], which permits Internet users to
share their files without central servers.

In the previous chapter, we identified many definitions of a P2P network: decentral-
ized and non-hierarchical node organization [STO 03], or taking advantage of resources
available at the edges of the Internet [ORA 01]. In this thesis, a P2P network follows
the definition of a “Pure Peer-to-Peer Network”, as in Definition 2.2.3, meaning that it
focuses on sharing resources, decentralization, and peer failures.

A Grid is an infrastructure that gathers shared resources, from different institutions,
in a virtual organization. Resources may be of anything that can be connected to a
computer network; resources are for instance, desktop machines, clusters, PDA, GSM,
sensors, etc.

In this thesis, we consider that resources can be of two kinds: desktop machine and
cluster; they are the most common on Grids. For us, a desktop machine or desktop
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is a computer, which has a single user. A cluster is typically a group of similar fast
computers, connected to a dedicated high-speed network, working together. Thus, a
cluster may be seen as a unique resource.

Usually, institutions have only one or two clusters, thus cluster’s users have to share
their computation slots with others; they are also not able to run computations that
would take months to complete because they are not allowed to use all the resources ex-
clusively for their experiments. On the other hand, institutions have several desktops,
which are under-utilized and are only available to a single user. The idea of gather-
ing all desktops of an institution in a virtual organization was firstly popularized by
Entropia [CHI 03]. This kind of Grid is know as desktop Grid.

We define desktop Grid as a virtual organization, which gathers desktops of a same
and single institution. Note that, the institution may be composed of several sites geo-
graphically distributed. In other words, desktop Grids is a Grid of desktops that are in
the same network.

However, existing models and infrastructures for P2P computing are limited as they
support only independent worker tasks, usually without communications between tasks.
However P2P computing seems well adapted to applications with low communication/-
computation ratio, such as parallel search algorithms. We therefore propose in this
thesis a P2P infrastructure of computational nodes for distributed communicating ap-
plications.

The proposed infrastructure is an unstructured P2P network, e.g. Gnutella [GNU 00].
In contrast to others P2P approaches for computing, which are usually hierarchical or
master-salve, our approach is original in the way that an unstructured P2P network
commonly used for file sharing can be also used for computing.

The P2P infrastructure has three main characteristics. First, the infrastructure is
decentralized and completely self-organized. Second, it is flexible, thanks to parameters
for adapting the infrastructure to the location where it is deployed. Finally, the infras-
tructure is portable since it is built on top of Java Virtual Machines (JVMs). Thus, the
infrastructure provides an overlay network for sharing JVMs.

The infrastructure allows applications to transparently and easily obtain compu-
tational resources from Grids composed of both clusters and desktops. The burden of
application deployment is eased by a seamless link between applications and the in-
frastructure. This link allows applications to be communicating, and to manage the
resources’ volatility. The infrastructure also provides large-scale Grids for computa-
tions that would take months to achieve on clusters.

In the previous chapter, we defined the concept of Grid computing; and we also pre-
sented peer-to-peer (P2P) architectures. Both, Grid and P2P, concepts share the same
goal. From this observation and our analysis, we established a list of several require-
ments that our infrastructure has to fulfill:

• Asynchronous communication between peers;

• Simple and unified way for acquiring resources;

• Flexible and easily adaptable to handle sites;

• Heterogeneity: Java and the inclusion of interface with most used Grid middle-
wares/infrastructures/schedulers;

• Resources usability: applications must have the full usage of acquired resources;
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• Dynamicity and volatility: unstructured P2P network;and

• Crossing firewalls.

In this chapter, we present the first part of this thesis main contribution, which is a
Grid infrastructure. We also describe a permanent desktop Grid, in our lab, managed
by our infrastructure, with which we experiment long-running computation.

In summary, the main features of the P2P infrastructure are:

• an unstructured P2P overlay network for sharing computational resources;

• building Grids by mixing desktops and clusters;

• deploying communicating applications; and,

• achieving computations that take months on clusters.

3.2 Design and architecture

We now present in detail the design and the architecture of the P2P infrastructure.

3.2.1 First contact: bootstrapping

A well-known problem of P2P networks is the bootstrapping problem, also called the
first contact problem. This problem can be solved by many different network protocols,
such as JINI [WAL 00]. It can be used for discovering services in a dynamic computing
environment. At first this protocol seems to be perfectly adapted to solve the bootstrap-
ping problem. However, there is a serious drawback for using this protocol: JINI needs
to be deployed on a network with IP multicast communications allowed. That means
JINI cannot be widely distributed.

Therefore, a different solution for the bootstrapping problem was chosen, inspired
from super-peer networks [YAN 03]. A fresh peer has a list of "registry addresses".
These are peers that have a high potential to be available; they are in a certain way the
P2P network core. The fresh peer tries to contact each registry within this list. When a
registry is responding, it is added to the fresh peer list of known peers (acquaintances).
When the peer has connected to at least one registry, it is a member of the P2P Network.
Figure 3.1 shows an example of a fresh peer that tries to connect itself to the infrastruc-
ture.

In a certain way, the P2P infrastructure may be considered as a hybrid network,
because registry peers propose a bootstrapping service that other peers do not provide.
However, we just explained that a protocol, such as JINI, may be used to provide the
first contact service. The infrastructure is open enough to use any kind of bootstrap-
ping protocol. Hence, we consider that the infrastructure is an unstructured pure P2P
network.

3.2.2 Discovering acquaintances

The main problem of the infrastructure is the high volatility of peers because those
peers are desktop machines and clusters nodes, possibly available for a short time.
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Figure 3.1: Bootstrapping problem

Therefore, the infrastructure aims at maintaining an overlay network of JVMs alive;
this is called self-organizing. When it is impossible to have external entities, such as cen-
tralized servers, which maintain peer databases, all peers must be capable of staying in
the infrastructure by their own means. The strategy used for achieving self-organization
consists of maintaining, for each peer, a list of acquaintances.

The infrastructure uses a specific parameter called Number of Acquaintances (NOA):
the minimum number of known acquaintances for each peer. Peers update their ac-
quaintance list every Time to Update (TTU), checking their own acquaintance list to
remove unavailable peers, i.e. they send heartbeat messages to them. When the num-
ber in the list is less than NOA, a peer will try to discover new acquaintances. To
discover new acquaintances, peers send exploring messages through the infrastructure
by flooding the P2P network.

The exploring message is sent every TTU until the length of the list is greater than
the NOA value. This message is sent with a unique identifier, with a reference to the
sender, and with the Time To Live (TTL) in number of hops. The TTL and the unique
identifier limit the network flooding.

When a peer receives an exploring message, it has to:

1. check the unique identifier: if it is an old message, drop it and do nothing;

2. store the unique identifier;

3. if the requester is not already in its acquaintance list: use a function to determine
if the local peer has to answer. This function is for the moment a random function,
in a future work we would like to improve the network organization.

4. then if the TTL decremented is greater than 0, broadcast the message to all its
acquaintances.
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Finally, NOA, TTU, and TTL are all configurable by the administrator, who has de-
ployed the P2P infrastructure. Each peer can have its own value of those parameters
and the values can be dynamically updated.

3.2.3 Asking resources

For the infrastructure and the application, all resources are similar. The infrastructure
is best-effort, applications ask for computational nodes, JVMs, but the infrastructure
does not guarantee that applications requests can be satisfied (not enough available
nodes, etc.). Usually applications request nodes from the infrastructure and then the
infrastructure returns node references back to the application. All requests from appli-
cations are in competition to obtain available resources. An available resource is a node
shared by a peer, which is free. In other words, a free node is the node that the peer does
not yet share with an application.

In order to satisfy node queries faster, we distinguish three cases.

Asking one node The application needs only one node, then the query node message
uses a random walk algorithm, which means that the next hop is randomly chosen. The
message is forwarded peer by peer until a peer has a free node to share or until TTL
reaches zero. While no free nodes have been found the application re-sends the message
at each TTU increasing eventually the TTL. Figure 1 shows the message protocol.

Message Protocol 1 Asking one node to the P2P infrastructure. This protocol shows
what is done by a peer when it receives a one node request:
Require: A remote reference on the node requester: Node_Requester,

the request TTL
Ensure: A free node for computation

if Node_Requester is Myself then
Forward the request to a randomly chosen acquaintance

else if I have a free node then
return the free node

else if TTL > 0 then
Forward the request to a randomly chosen acquaintance with TTL = TTL− 1

else
drop the request

end if

Asking n nodes The application needs n nodes at once, for that case the resource query
mechanism used is similar to the Gnutella [GNU 00] communication system, which is
based on the Breadth-First Search algorithm (BFS). Messages are forwarded to each
acquaintance, and if the message has already been received or if its TTL reaches 0,
it is dropped. The message is broadcasted by the requester every TTU until the total
number of requested nodes is reached or until a global timeout occurs. Also, we have
added a kind of transactional commit. When a peer is free, it sends a reference on
its node to the requester. Before forwarding the message the current peer waits for
an acknowledgment from the requester because the request could have already been
fulfilled. After an expired timeout or a non-acknowledgment, the peer does not forward
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the message. Otherwise, the message is forwarded until the end of the TTL or until
the number of requested nodes reaches zero. The acknowledgment message from the
requester is indeed the total number of nodes still needed by the requester. We can
distinguish three states for a peer: free, busy, or booked. This mechanism is specified in
Message Protocol 2.

Message Protocol 2 Asking for n nodes at once from the P2P infrastructure. This
protocol shows the response by a peer when it receives an n nodes request:
Require: A remote reference on the node requester Node_Requester,

the request TTL,
the request UniqueID, and
the requested number of nodes n

Ensure: At most n free nodes for computation
if Node_Requester is Myself or allPreviousRequests contains UniqueID then

drop the request
else

Add UniqueID in allPreviousRequests
if I have a free node then

Send the node to Node_Requester {Node_Requester receives the node and decides
whether or not to send back an ACK to the peer, which has given the node}
while not timeout reached do

wait for an ACK from Node_Requester {ACK is the number of still needed nodes
by the requester, ACK = 0 means NACK}
if ACK received and TTL > 0 and ACK > 1 then

Broadcast the message to all acquaintances with TTL = TTL − 1 and n =
ACK

end if
end while

end if
end if

Asking MAX nodes The application may ask for all available nodes, the message pro-
tocol is close to the previous one but does not need to wait for an acknowledgment and
the message is broadcast every TTU until the application end. Message Protocol 3 shows
the message protocol.

3.2.4 Peer and node failures

The infrastructure itself is stable, according to the Definition 2.2.3, as each peer man-
ages its own list of acquaintances by the heartbeat mechanism (see Section 3.2.2). There-
fore the infrastructure can maintain a network of peers until all peers are down, i.e. a
peer failure is not a problem for the infrastructure.

The issue is at the application level. The infrastructure broadcasts the node request
of the application through itself (see Section 3.2.3); when a peer has an available node,
it returns directly (point-to-point) to the application a reference to the node. Once the
application has received the reference there is no guarantee that the node is still up or
if the node will be up for all the time that the application needs it. Therefore it is the
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Message Protocol 3 Asking maximum nodes to the P2P infrastructure. This protocol
shows what is done by a peer when it receives a MAX nodes request:
Require: A remote reference on the node requester Node_Requester, the request TTL,

the request UniqueID
Ensure: Free nodes for computation

if Node_Requester is Myself then
do nothing

else
if I have a free node then

Send the node to Node_Requester
end if
if allPreviousRequests not contains UniqueID and TTL > 0 then

Add UniqueID in allPreviousRequests
Broadcast the message to all my acquaintances with TTL = TTL− 1

end if
end if

application’s responsibility to manage node failures.

However the P2P infrastructure is implemented with the ProActive Grid middle-
ware, which proposes a mechanism for fault-tolerance (see Section 6.3.3.1). With this
particular use case we have started to work on a mechanism to deploy non-functional
services, such as fault-tolerance or load balancing, on a Grid [CAR 06b]. This mecha-
nism allows users to deploy theirs applications on the P2P infrastructure and to have
fault-tolerance automatically applied.

Furthermore, the infrastructure does not work as a job/task scheduler, it is just a
node provider. Therefore the application has to manage all node failures and its own
failures. In a future work we plan to provide a job scheduler for the infrastructure, see
Chapter 7.

3.3 Integration within ProActive

The P2P infrastructure is implemented with the ProActive library, which is described
in Chapter 2.4. Thus, the shared resources are not JVMs but ProActive Nodes.

The infrastructure is implemented with classic ProActive active object model and
especially with ProActive typed group communication [BAD 02] for broadcasting com-
munications between peers. A peer is an independent entity that works as a server with
a FIFO request queue; it is also a client which sends requests to others peers, thus the
active object model can be easily representing our idea of what is a peer in our infras-
tructure. The main active object is P2PService, which serves all register requests or
resource queries, such as Nodes or acquaintances.

ProActive supports different communication protocols, such as RMI or HTTP; then
the infrastructure implemented at the top of the ProActive library allows each peer to
use different communication protocols. For example, a peer, which is a desktop machine,
accepts RMI communication but uses RMI/SSH to communicate with a peer inside a
cluster.
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The node-sharing mechanism is an independent activity from the P2P service. This
activity is handled by the P2PNodeManager (PNM) active object. The PNM manages
the sharing status, free for computation or not, of the peer JVM. The peer with its PNM
can also share JVMs from an XML Deployment Descriptor. That is useful to share some
JVMs from a cluster. For example, a peer at a fixed time can deploy JVMs on a cluster
and shares them with the infrastructure for a few hours, in the way to do not monopolize
the cluster for a long usage.

The node-asking mechanism is allowed by the P2PNodeLookup (PNL), this object is
activated by the P2P Service when it receives an node-asking request from an applica-
tion. The PNL works as a node broker for the application. The PNL aims to find the
number of nodes requested by the application. It uses our previously described message
protocols to frequently flood the network until it gets all nodes or until the timeout is
reached. However, the application can ask the maximum number of nodes, in that case
the PNL asks for nodes until the end of the application. The next code example shows
how to get access to the PNL from applications codes:

// Starting a local Peer:
StartP2PService startServiceP2P = new StartP2PService(peerListForFirstContact);
startServiceP2P.start() ;

// Get the reference on the P2P Service
P2PService serviceP2P = startServiceP2P.getP2PService();

// Asking n nodes to the infrastructure
P2PNodeLookup p2pNodeLookup = p2pService.getNodes(200);

// Get some nodes by the broker
Node[] someNodes = p2pNodeLookup.giveMeNNodes(50);
Node[] theRestOfNodes = p2pNodeLookup.giveMeAllNodes();

// End of the application free used nodes
p2pNodeLookup.killAll();

Finally, the access to the P2P infrastructure is fully integrated with the ProActive
deployment framework, which is based on an XML descriptor (more details on deploy-
ment in Chapter 6). The next example shows an example of an XML descriptor file with
nodes acquisition by the P2P infrastructure:

...
<jvm name="workers">
<acquisition>
<aquisitionReference re�d="p2pLookup"/>

</acquisition>
</jvm>
...
<infrastructure>
<acquisition>
<acquisitionDe�nition id="p2pLookup">
<P2PService NodesAsked="MAX" NOA="10" TTL="3" TTU="60000" acq="rmissh">
<peerSet>
<peer>rmi://registry1:3000</peer>
<peer>rmi://registry2:3000</peer>
</peerSet>
</P2PService>
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</acquisitionDe�nition>
</acquisition>
</infrastructure>
...

We have introduced a new tag for the XML descriptor, which is acquisition. This tag
allows to acquire Nodes for a Virtual Node from a P2P infrastructure. The parameter
NodesAsked of the tag P2PService is the number of Nodes asked to the P2P infrastruc-
ture, this number could take a special value MAX for asking the maximum available
Nodes in the P2P infrastructure. The tag peerSet contains the list of peers, which are
already in the P2P infrastructure. The next example shows a sample code from users
applications for deploying an application over the P2P infrastructure. It also shows how
applications can use an events/listeners mechanism to dynamically obtain new nodes:

ProActiveDescriptor pad = ProActive.getProactiveDescriptor("myP2PXmlDescriptor.xml");

// getting virtual node "p2pvn" de�ned in the ProActive Deployment Descriptor
VirtualNode vn = pad.getVirtualNode("p2pvn");

// adding "this" or any other class has a listener of the "NodeCreationEvent"
((VirtualNodeImpl) vn).addNodeCreationEventListener(this);

//activate that virtual node
vn.activate () ;

...
// The method to implement for the listening nodes acquisition
public void nodeCreated(NodeCreationEvent event) {
// get the node
Node newNode = event.getNode();
// now you can create an active object on your node.
}

3.4 Long running experiment

This section describes the experiments achieved for testing the P2P infrastructure. Ex-
periments have been done with the n-queens problem. We first describe the n-queens
problem and then we present the INRIA Sophia P2P Desktop Grid, which is a perma-
nent desktop Grid infrastructure managed by our infrastructure. Finally, we report a
long running experiment result, with which we have achieved a computation record by
solving the n-queens for 25 queens.

3.4.1 The n-queens problem

The n-queens problem consists in placing n queens on a n×n chessboard so that no two
queens are on the same vertical, diagonal, or horizontal line (i.e. attack each other). We
aim to find all solutions with a given n.

The chosen approach to solve the n-queens problem was to divide the global set of
permutations in a set of independent tasks. Then a master-worker model was applied
to distribute these tasks to the workers, which were dynamically deployed on a desktop
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Grid. The master frequently saves the computation status, i.e. returned results, on the
disk in order to continue the computation after a failure of the master’s host. Workers
failures are handled by master, the master re-submit the failed task to another worker.

3.4.2 Permanent desktop Grid: INRIA Sophia P2P Desktop Grid

In order to run our experiments, the INRIA Sophia P2P Desktop Grid (InriaP2PGrid)
has been deployed on about 260 desktop machines of the INRIA Sophia Antipolis lab;
this Grid is now a permanent Grid managed by our P2P infrastructure.

All these desktop machines are running various GNU/Linux distributions or Mi-
crosoft Windows XP as operating systems, on Intel CPUs, from Pentium 2 to dual-
Pentium 4. As to not interfere with daily work, the JVMs, Sun 1.4.2 or Sun 1.4.1, are
started with the lowest system priority.

Because these machines are used by their normal users, the INRIA lab direction
has authorized us to use machines during nights and weekends for P2P experiments.
However some of them may be run 24 hours a day. Thus machines are organized in two
groups:

INRIA-ALL joins the infrastructure during the night, 8:00pm to 8:00am, and during
weekend, Friday 8:00pm to Monday 8:00am.

INRIA-2424 is a sub-group of INRIA-ALL, and these machines are always members of
the infrastructure. This group counts 53 machines. They are selected in regard to their
CPU power, thus they are the fastest one.

Also, the users can interrupt the computation if ever our experiments bother them.
The INRIA-2424 peers are used as registries (all registries use themselves as registries);
and at certain fixed moments the rest of INRIA-ALL machines join the P2P infrastruc-
ture by contacting those registries. Figure 3.2 shows the InriaP2PGrid structure.

The repartition of CPU frequencies of all desktop machines are summarized in Fig-
ure 3.3.

Finally, the values of the P2P infrastructure parameters used by the InriaP2PGrid
are:

• NOA=30 acquaintances: each sub-network contains on average 20 machines, so
a peer discovers some acquaintances outside of its sub-network.

• TTU=10 minutes: INRIA-2424 machines are highly volatiles, we have observed
on this group that on average 40 machines are available out of 53. Every 10 min-
utes, one peer out of 30 becomes unavailable (host down, JVMs killed by users etc.).
It usually joins back the infrastructure some time later.P2P JVMs restart at fixed
time or when the host is up again.

• TTL=3 hops: it is the diameter of the network, as shown by Figure 3.2.

This permanent infrastructure has been used for long running experiment and, in
the next chapter, for large-scale experiments by mixing desktops and cluster machines.
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Figure 3.2: Desktop experiments: INRIA Sophia P2P Desktop Grid structure

3.4.3 Long running experiment

With the InriaP2PGrid managed by our P2P infrastructure, we are the first, as refer-
enced by [SLO 05], to solve the n-queens problem with 25 queens. All the results of the
n-queens experiment are summarized in Table 3.1. The experiment took six months for
solving this problem instance. The result was later confirmed by Pr. Yuh-Pyng Shieh
from the National Taiwan University.

Moreover, Figure 3.4 shows the number of peers, which participated to the n-queens
computation over time. This graph does not report all the experiment period time, only
three months out of six. During the experiment, the infrastructure counted 260 differ-
ent desktop machines and a top of 220 machines working at the same time. As shown in
Figure 3.4 the infrastructure was down 3 times, owing to 3 global lab power cuts. Once
the power back, the computation succeeded to start again by its own. Figure 3.4 shows
some troughs where the infrastructure provided less peers for the computation; these
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Figure 3.3: Desktop Grid: CPU frequencies of the desktop machines

Table 3.1: Desktop experiments: n-queens experiment summary with n=25

Total of Solution Found 2, 207, 893, 435, 808, 352
≈ 2 quadrillions

Total # of Tasks 12, 125, 199
Total Computation Time 4, 444h54m52s

≈ 185 days
Average Time of One Task Computation ≈ 2m18s

Equivalent Single CPU Cumulated Time 464, 344h35m33s
≈ 53 years

Total # of Desktop Machines 260 (max of 220 working concurrently)

troughs result from some network hardware failures (switch, router, etc.) with conse-
quence of removing some sub-networks.

Figure 3.5 shows the percentage of tasks computed by the workers. To plot this graph
we first sort all machines according to the number of tasks computed. Then we calcu-
lated the percentage of tasks computed by those workers. We observe that 10% of all
workers (26 workers) have computed 27.78% of total tasks and that 20% have computed
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Figure 3.4: Desktop experiments: number of peers per days, which have participated in the
n-queens computation

44.21% of total tasks. We also observed that the first 28 workers (≈ 11%) of this graph
are all members of the group INRIA-2424. We also note that ≈ 50% have done ≈ 25% of
the total work. It is a normal observation because these machines are the most powerful
and work 24 hours a day. However, it is only a half of this group (out of 53 machines).
The JVMs of the second part ran on machines over-loaded because of regular use of their
users, or even the JVMs were often killed by users, suffered hardware failures, or ran
on more unstable systems, for instance.

The INRIA-2424 are selected in regard to their CPU power, thus it is normal that
they computed a large number of tasks. Also, the INRIA-ALL is composed of a large
number of less powerful machines. Figure 3.3 shows that about 46% of machines have
CPUs of speed less that 2.5GHz, i.e. machines at least 2 years old. Nevertheless, these
machines contributed with 34% of the total number of tasks.

To conclude, all this experimentation and figures show that it is hard to forecast
which machines we have to choose for improving the total computation time.
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Figure 3.5: Desktop Grid: Percentage of tasks computed by all peers

3.5 Application to numerical hydrodynamic simulation

At the end of the year 2005, the OASIS project of INRIA Sophia lab started a collabo-
ration with the Société du Canal de Provence company (SCPid). The goal was to port a
numerical hydrodynamic simulation software, TELEMAC-2D, to desktop Grids.

In this section, we present the results of that collaborative effort [CAR 06a]. First, we
describe the work of SCPid on river modeling using finite element method. Second, using
ProActive and especially our P2P infrastructure, we demonstrate how to design and
program a distributed version of TELEMAC-2D, wrapping legacy code and deploying it
on desktop Grids. Then, we report experiments on the INRIA Sophia P2P Desktop Grid
(InriaP2PGrid).

3.5.1 Motivations and context

In order to review the plan of flood risk management all along the river Durance, the
French government asked SCPid to build a numerical model of part of the river to study
flood expansions and propagations [C. 05]. The concerned area represents more than
50 km of river between the Cadarache dam and the Mallemort dam. Also are present
many levees or dikes that are important in flood propagation, which must be included
in the model.
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Two-dimensional mathematical models are increasingly used for the simulation of
flood propagation in river plains. This type of model are now preferred to the former 1D
network model with the conceptualization of the flood plain by a series of ponds, which
necessitate adjusting a number of parameters in order to describe the conceptualized
hydraulic transfer between ponds.

Finite elements description is particularly well adapted to such topography because
of the possibility to refine the mesh where it is important to have a good description of
the field. Hence, the obtained mesh of the considered Durance river area account more
than 20,000 calculation nodes. The computation of one flood algorithm can then takes
up to 38 hours on a dedicated workstation, which prevents the engineers from taking
advantage of all the benefit that the model can provide.

In the past decade, hydroinformatics have seen the apparition of more powerful tools
in order to improve the knowing of natural phenomenon. Some of them are two dimen-
sional free surface flow models which are especially useful for floodplain modeling. The
SCPid uses a software called TELEMAC 2D to build such hydraulic models. This is a
program for the solution of the two dimensional Saint-Venant equations in their depth-
velocity form using triangular finite elements. It has been developed by EDF-DRD.

The objective of this work is to provide a desktop Grid environment for TELEMAC-
2D. The work achieved by the OASIS project in that collaboration was:

• wrapping TELEMAC-2D code;

• adapting the P2P infrastructure for requesting specific resources, such as running
Windows OS; and

• deploying TELEMAC-2D on desktop Grid.

3.5.2 River modeling using finite element method

The Saint-Venant equations The model uses the depth-velocity form of the 2D Saint-
Venant equations (continuity and momentum equations):

δh

δt
+ U · ∇h + h∇ ·U = S (3.1)

δU
δt

+ U · ∇U = −g∇Z + hF +∇ · (hve∇U) +
S

h
(US −U) (3.2)

Where h is the water depth, Z is the free surface elevation, U is the velocity vector,
F is the friction force vector, S is the bottom source term, US is the source term velocity
vector, ve is the effective viscosity, which includes the dispersion and the turbulence
contributions.

The friction force is given by the Strickler formulae:

F = − 1
cosα

g

h4/3K2
UU (3.3)

Where α is the steepest slope at the point and K is the Strickler coefficient.
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Boundary conditions Physically two types of boundary conditions are distinguished:
the solid boundaries and the liquid boundaries.

In solid boundaries there exists an impermeability condition: no discharge can take
place across a solid boundary. In order to take account of friction the following relation
is imposed:

δU
δn

= aU (3.4)

Where a is the boundary friction coefficient and n is the normal vector.
Liquid boundary condition assumes the existence of fluid domain that does not form

part of the calculation domain. Four types of liquid boundaries are distinguished:

• Torrential inflow: velocity and depth prescribed

• Fluvial inflow: velocity prescribed and free depth

• Torrential outflow: free velocity and depth

• Fluvial outflow: free velocity and prescribed depth

Initial conditions In order to obtain realistic initial conditions, the simulation starts
from a fictive reasonable state satisfying all the boundary conditions. Keeping the up-
stream discharge equal to the initial value of the flood hydrograph, the calculation is
performed, and a final stationary state is obtained, with water only in the main chan-
nel. It is this stationary state which is used as initial state for the flood study.

The algorithm The Saint-Venant equations are solved in two steps. The first step
allows computing the convection term with the characteristic method. In the second
step, the program solves the propagation, diffusion, and source term of the equations
with a finite elements scheme. Variationnal formulation associated with time and space
discretization changes continuous equations in discreet linear system where unknown
quantities are depth and velocity at each node. Iterative method is then used to solve
this system [JM. 03].

Results The results of such a model are depth and velocity field at each node and at
each time step. The analysis is done through time or space variations or maximum
values of quantities. Figure 3.6 is an analysis of the flood dynamic. It represents the
flow on small part of the modelled area. As the software compute the complete velocity
field, it is possible to distinguish main flow from secondary flow like overtopping or weir
flow above dikes. It is also possible to evaluate the modification in first bottom flow
when breaches occur. Figure 3.7 represents the depth field. Places where water depth
is more than one meter are identified in black while places where water depth is more
than half a meter are identified in grey.

Running time of the software A calculation on such a model requires a running time of
the same order than the propagation time of the flood on a dedicated workstation with
two 2.4 GHz processors and 1 GB RAM. Therefore, it is difficult to optimize the model
as time between one modification and its result is very long.

The Durance model is the largest one built in SCPid. SCPid has also built up to
10,000 calculation nodes, for running time of about 10 hours. This model has been used
for the first tests of desktop Grid computing.
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Figure 3.6: Dynamic analysis of flood

3.5.3 The TELEMAC system parallel version with ProActive

The parallel version of the TELEMAC System is based on the Single Program Multiple
Data (SPMD) programming model, which focuses on distributing the same program on
different computers, each program computes some parts of data. The TELEMAC Sys-
tem uses the Message Passing Interface (MPI) [GRO 96] to distribute the computation
among several computers.

In order to distribute computations, an MPI process needs, before to start comput-
ing, to have on the targeted host an MPI Daemon (MPD) previously running, i.e. a
runtime for MPI processes. The deployment of the MPI program is handled by the MPI
job launcher (MPIrun), which deploys MPI processes on specified MPDs.

Thus, TELEMAC-2D users have to follow steps for deploying theirs simulations,
these steps are:

1. Editing the TELEMAC-2D simulation configuration file to specify which parallel
mode to use and how many CPUs are needed.

2. Starting MPDs on each host.

3. Writing MPI configuration files with addresses of MPDs for each MPI process.

4. Starting the TELEMAC-2D computation: prepare simulation data and run the
MPI job launcher.

All these steps imply for users to modify two configuration files and to start process
(MPDs) on all involved hosts. Furthermore, users have to run all these steps each time
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Figure 3.7: Depth field

they have to perform a simulation.

Users with good computer background can easily write scripts for automating these
burden steps. Nevertheless, regular TELEMAC-2D users are not friendly with command-
line tools, scripts, etc. Therefore, in this work we propose to automate all these painful
steps.

Our solution turns this static deployment into a dynamic and automated one, which
does not require special skills from users. The main points of the deployment mecha-
nism which we will focus are:

• automating configuration file edition and

• providing a dynamic desktop infrastructure for deploying simulations.

Therefore, we propose a seamless system, which is composed of a graphical client
interface for managing simulations and of a wrapping of TELEMAC-2D. This legacy
wrapping aims to deploy simulations on a desktop Grid managed by our P2P infrastruc-
ture. In this work, we focus on the usage of the infrastructure.

TELEMAC-2D manager We have developed a graphical job management application,
TELEMAC-2D manager, for seamlessly deploying TELEMAC-2D simulations. Users
only have to follow some basic steps:

1. Starting the job management application.
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2. Selecting a TELEMAC-2D simulation file.

3. Selecting the desired resources from the desktop Grid.

4. Starting computation.

Thus the application entirely hides connections to the desktop Grid. The application
manages the acquisitions of resources and the remote MPD deployment using active
objects, which are started by the application on acquired resources. It also automates
all the MPI configuration file creation and modification edition process. Thereby the
application eliminates all the burden steps required with the classical TELEMAC-2D.

In addition of helping to deploy simulations, the manager controls the computation.
Users are able to stop, pause, and restart their simulations. TELEMAC-2D uses a check-
point mechanism to frequently backup the simulation state. Also, it does not require to
re-start all the simulation when a process failed; other process are paused until a new
process is started.

This fault-tolerant mechanism is very important in the context of desktop Grids,
because machines are unstables. Hence, TELEMAC-2D manager continually monitors
resources on which the simulation is executing, and when a process is done it asks for
a new resource to the P2P infrastructure, starts MPD, and then restarts the simulation
from the last check-point.

Adaptation of the P2P infrastructure The infrastructure is the same as previously de-
scribed in this chapter. However, TELEMAC-2D is a closed-commercial application,
which runs only on Windows powered machines. In the other words, we do not have
access to the application’s code and we cannot modify or re-compile it.

The TELEMAC-2D manager that we have developed is able to deploy TELEMAC-2D
on machines running Windows OS. The deployment is indeed creating a specific active
object on machines, and call a method on the active object for locally starting a MPD
process. Then, the graphical client can start the simulations.

The desktop Grid is managed by the P2P infrastructure, thus the TELEMAC-2D
manager acquires resources from the infrastructure. One of the main particularities of
the infrastructure is that all resources are identical, i.e. the infrastructure differentiates
only the state of nodes (free or not). In addition, Java does not allow to collect a complete
description of the system on which the JVM is running. However, the single requirement
of TELEMAC-2D is the operating system; Java provides the system architecture, the
name of the operating system and its version.

Thus, we have modified the resource request protocol of the P2P infrastructure to
take into account the operating system requirement. The request include a new optional
parameter, which is the name of the operating system. Protocols, previously presented,
are still the same, except for the case of the peer has a free node to share. Before
returning the node, the peer compares the operating system parameter with the local
operating system name. If they match, the node is returned to the requester, otherwise
the protocol runs as if the peer has no free nodes.

This improvement of the request protocols is used for constrained deployments, more
details in Chapter 6.

Figure 3.8 shows the INRIA Sophia P2P Desktop Grid running TELEMAC-2D.
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Figure 3.8: TELEMAC-2D desktop Grid

3.5.4 Experiments

Experimentation results for the Siagne river model using the parallel version of the
TELEMAC-2D are shown by Figure 3.9. These experiments have been run out using a
desktop Grid deployed at INRIA Sophia Antipolis lab; this Grid is composed of Windows
desktop workstations running Pentium 4 at 3.6 GHz. We notice that the execution times
are very close for both two CPUs and four CPUs. We believe that this phenomenon is due
to the parallelization technique that uses sub-domain decomposition. Therefore when
sub-domains are too small, workstations are communicating more than they compute,
thus increasing the overall computation time.

3.5.5 Analysis

In this work we show that an MPI application, TELEMAC-2D, with a static-based de-
ployment requires significant efforts to be deployed on a desktop Grid. Thus it in-
volves end-users in burden tasks such as managing available resources and editing
configuration files, both of them manually. Therefore we have developed a lightweight
TELEMAC-2D job management application. This job manager addresses previous prob-
lems without requiring any source code modification of the original MPI application. In
addition we believe that this tool is not only limited to TELEMAC-2D and can be com-
monly used to deploy and manages other MPI SPMD-like applications.

The P2P infrastructure helped in order to maintain a dynamic set of resources, and
to select appropriate resources (running Windows). Unfortunately, we regret to do not
have more Windows desktops in order to run simulation with more CPUs.S
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Figure 3.9: Benchmarks of the parallel version of TELEMAC deployed on a desktop Grid

Nevertheless, experimentation shows that even with a small desktop Grid there is a
real execution time gain while running the simulation.

3.6 Conclusion

In this chapter we described our P2P infrastructure for building Grids. This infrastruc-
ture is an unstructured P2P overlay network for sharing computational resources. It
also allows to deploy and to complete computations that would take months to achieve
on clusters.

In order to validate our approach, we have deployed a permanent desktop Grid,
managed by our P2P infrastructure, in our lab. This Grid federates under-exploited
desktops of the INRIA Sophia center. With this experimental infrastructure, we are the
first to solve the n-queens problem with 25 queens. This computation took six months
for solving this problem instance; and thus validated that the infrastructure can be used
for long-running computations.

Furthermore, we also show the capability of the infrastructure to handle and to de-
ploy non-Java applications, such as TELEMAC-2D that is a MPI SPMD-like application.

In the next chapter, we present a parallel branch-and-bound framework for Grids,
named Grid’BnB. We then report large-scale experiments of Grid’BnB with the P2P
infrastructure. In these experiments, the infrastructure allows us to build a Grid com-
posed of the INRIA Sophia P2P Desktop Grid and clusters that are nationally-distributed
in France.
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Chapter 4

Branch-and-Bound: A
Communicating Framework

Previously in Chapter 2, we introduced principles about parallel branch-and-bound, and
we also identified requirements that a B&B framework for Grids has to fulfill. With
these requirements, we now present the second part of this thesis contribution, a paral-
lel B&B framework for Grids. This framework is named Gird’BnB [CAR 07c].

First, we remember the motivations and the objectives of this framework. Second,
we describe the architecture and the implementation. Then, we report experiments on
a cluster and a nation-wide Grid.

4.1 Motivations and objectives

In Chapter 2, we identified the requirements that a B&B framework must fulfill, from
the users point of view:

• Hiding parallelism and Grid complexities. Parallel programming is complex
and especially in Grid computing, which adds new programming challenges to
manage. The main goal of this framework is to hide all parallelism and Grid com-
plexities from the users. Thus, users only need yo code the algorithms for solving
their optimization problems.

• Combinatorial optimization problems. B&B is an algorithmic technique for
solving several kind of problems. In this thesis work, we test our framework with
combinatorial optimization problems.

• Ease of deployment. Deployment of applications on Grids is a complex task.
Using an adequate underlying Grid middleware helps users to easily deploy their
applications on Grids.

• Principally tree-based parallelism strategy, we presented several techniques for
paralleling B&B and identified that the tree-based is the most studied. For that
reason, we choose to based the framework on this one. However, users can easily
implement other.

• Implementing and testing search strategies, a generic search strategy can-
not be used to solve all combinatorial problems. Depth-first search may be good
for a given problem and bad for another. Hence, the framework proposes several
strategies, and allows users to provide their own.

65
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• Objective function is the problem to solve. It is what users have to implement
and to optimize. The framework must be enough well designed for that perfor-
mance issues result from the objective function and not from the framework’s core.

In addition of these user-level requirements, we defined the characteristics that a
parallel B&B framework for Grids as to satisfy:

• Asynchronous communications hides latency and bandwidth reduction involved
by Grid environments. Also, asynchronous communications between distributed
processes avoid computation pauses for synchronization. Thus, the framework can
efficiently use parallelism and takes the maximum profit from the large pool of
resources provided by Grids.

• Hierarchical master-worker, Aida et al. [AID 05] show that running a paral-
lel B&B application based on a hierarchical master-worker architecture scales on
Grids.

• Dynamic task splitting, this requirement results from the choice of using the
master-worker paradigm. The solution tree is indeed generated as a set of tasks,
each task representing a sub-part of the tree. As the tree is unknown at the begin-
ning, tasks are dynamically produced as long as branching is operated.

• Efficient parallelism and communications, both asynchronous communica-
tion and master-worker are not enough to provide an efficient parallel framework.
We already identified that the productivity of the pruning operation depends on
how the global lower/upper bound is updated on each process. Thus, impacting on
the overall computation performance.

– sharing the current best lower/upper bound with communications, each pro-
cess keeps a local copy of the best bound. Then, when a better bound is found,
the process send the new value to other.

– communications between workers, because we choose master-worker paradigm,
processes are workers. For scalability and performance issues, using central
communication (through the master) is not possible with a large number of
workers.

– organizing workers in groups to optimize inter-cluster communications, due
to the large number of worker, a communication from a worker to all can
take a while. On the other hand, Grids are usually built of clusters, which
are high speed communication environments, inter-connected by shared net-
works. Thus, communications inside cluster are very efficient but communi-
cations between clusters are slower. We propose to organize workers in groups
to optimize the update of the best bound.

• Fault-tolerance, the probability of failures is dramatically high for Grid systems:
a large number of resources imply a high probability of failures of one of those
resources. Hence, the framework must be able to handle node failures.

With all these requirements for parallel B&B, and more specially on Grid environ-
ments, we propose, in this thesis, Grid’BnB a complete Java API for using parallel B&B
technique with Grids. Grid’BnB aims to hide Grid difficulties to users. Especially, fault-
tolerance, communication, and scalability problems are solved by Grid’BnB. The frame-
work is built over a master-worker approach and provides a transparent communication
system among tasks. Local communications between processes are used to optimize the
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exploration of the problem to solve. Grid’BnB is built on top of the ProActive Grid mid-
dleware (fully described in Section 2.4).

We also present a mechanism based on communications between workers to share
the best upper bound (GUB). Thereafter, we propose a system to dynamically organize
workers in groups of communication. This organization aims to control communication
for scalability.

In summary, Grid’BnB main features are:

• master-worker architecture with communication between workers;

• dynamic task splitting;

• different search tree algorithms;

• sharing the current best upper bound with communications;

• organizing workers in group to optimize inter-cluster communications; and

• fault-tolerance.

4.2 Design and architecture

We now present in detail the design and the architecture of Grid’BnB, the parallel B&B
framework for Grids.

4.2.1 Entities and their roles

Grid’BnB is based on a hierarchical master-worker architecture. We already defined
master-worker in Definition 2.2.1. Hierarchical master-worker introduces a new entity
comparing to simple master-worker. The third entity is the sub-master. Its role is sim-
ilar to the master: distributing tasks to workers and gathering partial results. The
difference between the master and the sub-master is that the sub-master acts like an
intermediary. In other words, the sub-master requests tasks to the master and sends
results to the master. Figure 4.1 shows an example of hierarchical master-worker archi-
tecture. Note that some workers may directly interact with the master, without passing
through a sub-master.

The hierarchical master-worker paradigm is one of solutions to avoid performance
degradation in classical master-worker paradigm for Grids. The advantages of this ar-
chitecture are: first, to reduce communication overhead by organizing worker in groups;
and second, to avoid a single over-loaded master becomes a performance bottleneck.

Because in our model, workers have to communicate with each other in order to
share the GUB, we have to adapt the hierarchical master-worker paradigm for this
requirement. Thus, Grid’BnB is composed of four kind of entities: master, sub-master,
worker, and leader. We consider that the sub-master cannot handle communication
because sub-masters are deployed by the users, thus sub-masters do not necessarily
reflect the Grid topology.

We now define and describe in detail the role of each entities:

• Master is the unique entry point: it receives the entire problem to solve as a single
task (it is the root task). At the end, once the optimal solution is found, the master
returns the solution to the user. Thus, the master is responsible for branching the
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Figure 4.1: Hierarchical master-worker architecture

root task, managing task allocation to sub-masters and/or workers, and handling
failures.

• Sub-master are intermediary entities whose role is to ensure scalability. They
are hierarchically organized and forward tasks from the master to workers and
vice versa by returning results to the master (or their sub-master parent).

• Worker is to execute tasks. They are also the link between the tasks and the
master. Indeed when a task does branching, sub-tasks are created into the worker
that sent them to the master for remote allocation.

• Leader: is specific role for workers. Leaders are in charge of forwarding messages
between clusters (more details in Section 4.2.5).

Figure 4.2 shows the global architecture of Grid’BnB. Sub-master and leader entities
are indeed specific roles of master and worker: a master can be sub-master when it
manages workers and has a master parent, and a worker can be leader when it is in
charge of forwarding communications between clusters.

Sub-masters and leaders look similar because they are both an entity, which man-
ages workers. However, they have two clearly different functions. The sub-master for-
wards tasks and results between the master and workers, its role is to improve scala-
bility of the architecture. On the other hand, leaders are not mandatory to the architec-
ture,i.e. without leaders the framework is still able to solve user problems and also to
scale. They aim to improve communication performances between workers in order to
share GUB. The leader is more detailed in Section 4.2.5.
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Figure 4.2: Global archictecture of Grid’BnB

4.2.2 The public library

Users who want to solve combinatorial optimization problems have to implement the
task interface provided by the Grid’BnB API. Figure 4.3 shows the task interface pro-
vided by the framework API.

public abstract class Task<V> {
protected V GUB;
protected Worker worker;

public abstract V explore(Object[] params);

public abstract ArrayList<?extends Task<V>> split();

public abstract void initLowerBound();

public abstract void initUpperBound();

public abstract V gather(V[] values) ;
}

Figure 4.3: The task Java interface

The task interface contains two fields:
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• GUB is a local copy of the global upper bound; and

• worker is a reference on the associated local process, handling the task execution.

The main method that users have to implement is explore, this is the objective func-
tion. The result of this method, of type V, must be the optimal solution for the feasible
region represented by the task. V is a Java 1.5 generic type: the user defines the real
type.

The branching operation is implemented by the split method. In order to not always
send to the master all branched sub-problems, the Grid’BnB framework provides, via
the worker field, the method availableWorkers, which allows users to check how many
workers are currently available. Depending on the result of this method, users can
decide to do branching and to locally continue the exploration of the sub-problem. In
other words, this method helps users to program tasks and to dynamically determine
the granularity of the tasks.

To help users to structure their codes, we introduce two methods to initialize bounds:
initLowerBound and initUpperBound. These two methods are called for each task just be-
fore the objective function, explore, and they are not mandatory. The last method to
implement is gather: the (sub-)master calls this method when all its tasks are solved.
The method returns the best results from all tasks, i.e. the optimal solution.

Figure 4.4 shows the interface of the worker. All the interface’s methods are imple-
mented by the framework itself. Users call these method from their task objects, which
implement the previous presented interface Task.

public interface Worker <T extends Task, V>{
public abstract IntWrapper availableWorkers();

public abstract void sendSubTasks(ArrayList<T> subTasks);

public abstract void newBestBound(V betterBound)
}

Figure 4.4: The worker Java interface

The method availableWorkers has been already presented, however the return type is
a special object: IntWrapper. This object encapsulates a Java int. Because we implement
the framework with the active object programming model provided by the ProActive
Grid middleware, this model allows to call methods in asynchronous way except when
methods return a Java primitive types, such as int. Thus, we have to use a primitive
type wrapper provided by the middleware.

Like availableWorkers all worker interface methods have to be call from the task. The
method sendSubTasks send the result of the split method to the master or sub-master.
The last method, newBestBound, update the GUB in all workers, more details in Sec-
tion 4.2.5.

A complete example of this API is described in Section 4.4.
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4.2.3 The task life-cycle

The master, which is the entry point, takes a single task from the user. This task im-
plement the task interface previously presented. This task is the root task, it represent
the whole problem to solve. This section presents the execution of the root task, i.e. the
solving of the problem.

The root task is passed to the master that performs the first branching, which pro-
vides sub-tasks. Then when a task is allocated to a worker, the worker starts to explore
it. Figure 4.5 shows the state diagram of the task during its execution. As soon as a
worker is available, a new task can be allocated. The worker starts by heuristic methods
to initialize lower/upper bounds for the current feasible region, then it calls the objec-
tive function. Within the objective function the user can decide whenever it is needed to
branch the current region with the help of the availableWorkers method, which returns
the current number of free workers.
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Figure 4.5: Task state diagram

4.2.4 Search tree strategies

The tasks allocation is handled by the master, and it is indeed the search tree strategy;
thereby the master works as a queue for task scheduling. The exploration algorithm
of the search tree is important regarding performances. Therefore, Grid’BnB allows
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users to choose the best adapted algorithm to solve their problems. We propose four
algorithms:

• breadth-first search explores the tree in larger;

• depth-first search explores all branches one by one;

• first-in-first-out (FIFO) explores the tree following the order tasks have been sent
to the master; and

• priority explores in priority branches that updated the GUB the most frequently.

If none of those algorithms satisfy the problem, users can implement their owns. The
framework provides a public interface for this.

4.2.5 Communications

In order to minimize the execution time, the framework proposes to share the best cur-
rent lower/upper bound, here the upper bound (GUB).

The tasks produce new GUB candidates while they are computed by workers. The
GUB must be available to all tasks to prune the maximum of none promising branches
of the search tree. The strategy for sharing GUB is to use a local copy of GUB on all
workers and to broadcast updated value. Figure 4.6 shows the process of updating GUB
when a worker finds a new better upper bound.
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Figure 4.6: Update the best global upper bound

To be efficient, a B&B framework has to broadcast the GUB as fast as possible. With
a large number of workers, directly broadcasting GUB to every worker cannot scale. For
that reason Grid’BnB organizes workers in groups.
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Groups are sets of workers, which can efficiently broadcast GUB between them. The
master is in charge of building groups. Thus, the main criterion to put workers in the
same group is their localization on the same cluster. Clusters usually provide a high
performance environment for communication. Thereby there is no scalability issue to
broadcast GUB within the same cluster. The master elects a worker as leader in each
group. This leader has a reference to all other group leaders. When a leader receives
a communication from outside its group, it broadcasts the communication to its group.
Inversely when the leader receives a communication from a member of its group, it
broadcasts the communication to the other leaders. To limit useless broadcast, leaders
forward communication only if the new upper bound is better than their own GUB value.
Figure 4.7 shows an example of broadcasting GUB between groups.
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Figure 4.7: Broadcasting solution between group of workers

The localization of workers is done by an extension of the ProActive deployment
mechanism (described in Section 6.1). This improvement is one of this thesis contribu-
tion and aims at localizing computational resources on Grids. With an abstract deploy-
ment, we are able to detect architectural locality at runtime. The goal of this contribu-
tion is to provide the Grid topology to applications in order to improve scalability and
performance. The localization mechanism is presented in Section 6.2.

4.2.6 Load-balancing

Even if load-balancing comes naturally from master-worker paradigm, it is important
to explain how it works. Especially due to higher possibility of failure, tasks can become
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very imbalanced.

The load-balancing is indeed not transparent. The framework provides a method to
help users to take maximum advantage of the large number of workers. This method
is availableWorkers, which returns the number of current available workers (waiting for
tasks). Ideally, users have to branch tasks until the number of available workers reaches
zero, then wait for free workers before branching again.

The second problem with load-balancing is when a task fail, failures and fault-
tolerance are treated in the next section. Once the fault is detected by the framework,
the master reallocates the task as soon as a worker is available for computation. The
task is executed before the other, which are waiting to be executing.

4.2.7 Exceptions and fault-tolerance

We distinguish two kind of failures: user failures and infrastructure failures.

User failures Within the users code, errors can occurs, such as uncaught exceptions.
Users exceptions are handled by workers. When a worker catches an exception, the
worker forwards it to the master, and then the master stops the whole computation and
returns the exception to the user.

Infrastructure failures The last feature of Grid’BnB is the fault-tolerance. It is an im-
portant issue on Grid environments; the large number of resources that are distributed
on different administration domains implies a high probability of faults, such as hard-
ware failures, networks down time, or maintenance.

Master and sub-masters hierarchically manage infrastructure failures, such as host
failures. The master monitors sub-masters and the sub-masters monitor workers. The
monitoring consists of frequently pinging monitored entities. When the ping call fails
(communication timeout, network errors, etc.), the remote host is considered as unreach-
able and down.

When a worker is unreachable, the master re-allocates the task to the next available
worker. If for the same task several results are returned to the master (worker consid-
ered down for network problem and come back), only the first one is kept, others are
flushed. The master handles the fault of sub-masters: if a sub-master does not answer
to a ping call, the master chooses a free worker and re-instantiates it as a sub-master.
The master handles the host fault of leaders; the master frequently pings leaders. When
a leader is unreachable, the master elects a new leader in the group.

The master has to be deployed on a stable machine, because it is at the top of the
monitoring hierarchy. As opposed to sub-masters and workers, master host failures
cannot be dynamically handled by the framework but require users intervention. The
status of the current execution (current GUB and all tasks) is frequently serialized on
the disk of the master. Thus for long-running problem, if the host of the master faults
the user can restart the solving at the last state of the execution.

Grid’BnB provides a high level programming model for solving problems with par-
allel B&B. From the users points of view, the framework handles all issues related to
distribution/parallelism and fault-tolerance. The API is also very simple: it consists
only in the Task interface. Thus, users can focus exclusively on their objective function.
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In the next sections, we describe the framework implementation within ProActive and
present an user example.

4.3 Implementation

Grid’BnB is implemented within the Java ProActive Grid middleware, described in Sec-
tion 2.4. ProActive is based on the active object programming model.

Master, sub-masters, and workers are active objects. Each active object serves re-
mote calls in FIFO order. The master manages futures on current executing tasks.

Then, groups of workers are ProActive groups. Leaders are also member of a ProAc-
tive group. Thereby, hierarchical ProActive groups represent workers. A hierarchical
group is indeed a group of groups.

Finally, in order to optimize communication between workers to solve more rapidly
problems, the management of workers in groups relay on the ProActive deployment
framework. ProActive features a system for the deployment of applications on Grids.
The Chapter 6.2 explains the deployment mechanism and how we extended it to manage
organization of workers in groups of communications.

4.4 Grid’BnB user code example: solving flow-shop

In this section, we illustrate Gird’BnB with a complete example of solving a combinato-
rial optimization problem, the flow-shop.

4.4.1 The flow-shop problem

Flow-shop is a NP-hard [GAR 76] permutation optimization problem. The flow-shop
problem consists in finding the optimal schedule of n jobs on m machines. The set of jobs
is represented by J = {j1, j2, . . . jn}, each ji is a set of operations ji = { oi1, oi2, . . . oim }
where oim is the time taken on machine m and the set of machines is represented by
M = {m1,m2, . . . mm}.

The operation oij must be processed by the machine mj and can start on machine
mj if it is completed on mj−1. The sequence of jobs are the same on every machines, e.g.
if j3 is treated in position 2 on the first machine, j3 is also executed in position 2 on all
machines.

We consider the mono-objective case, which aims to minimize the overall completion
time of all jobs, i.e. makespan. The makespan is the total execution time of a complete
sequence of jobs. Thus, the mono-objective goal is to find the sequence of jobs that takes
the shortest time to complete.

Figure 4.8 shows an example of flow-shop permutation problem schedule.

4.4.2 Solving flow-shop with Grid’BnB

4.4.2.1 The algorithm

For this example, we apply a simple B&B algorithm to solve the flow-shop problem.
The technique consists of enumerating all possible permutations of jobs, and of pruning
non-promising partial enumerations.

This algorithm is far from being the fastest algorithm to solve flow-shop with B&B.
We use this algorithm because of its simplicity as an example. A potential improvement
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Figure 4.8: Example of flow-shop permutation problem schedule

of this example could to use the algorithm proposed by Lageweg [LAG 78].

The search tree is dynamically generated and it is represented by tasks. The root
task represents the whole tree. Gird’BnB firstly branches the root task, for this example,
the root task splits in n sub-tasks, where n is the total number of Jobs.

When a task is executed by a worker, the task enumerates all permutations of its
tree part. The task frequently checks the availability of free workers, by calling the
method availableWorkers. When workers are free, the task does the branching operation
by splitting itself in sub-tasks. The task may improve the current value of GUB, in this
case the task informs others by calling the method newBestBound. The task is also re-
sponsible for pruning bad tree branches of its part. Figure 4.9 shows the decomposition
of the search tree in tasks.

j1 j2 jn

jnj2 j1 jn

...

... ...

Root Task

Task 1 Task 2
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Task 3

Figure 4.9: Flow-shop search tree decomposed in task

4.4.2.2 The root task

The root task is implemented by the user and represents the whole problem to solve.

The flow-shop task is the interface that the user has to implement:

public class FlowShopTask extends Task<FlowShopResult> {

/**
* Construct the root task with the �ow-shop instance to solve .
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* This instance can be a sub-part of the whole instance to solve .
*/
public FlowShopTask(FlowShopProblem p) {
this .�owshopProblem = p;

}
}

The user must implement several methods in the task.

Initializing bounds for the sub-part of the search tree represented by the task. For this
example, we do not initialize the lower bound. The upper bound is initialized with the
makespan of a permutation randomly chosen in set of permutation of the task, if better
than GUB, otherwise it is GUB.

// Compute the lower bound
public void initLowerBound() {
// nothing to do

}
// Compute the upper bound
public void initUpperBound() {
this .upperBound = this.computeUpperBound(this.p);

}

Branching: split method Split the task in ten sub-tasks.

public Vector split () {
// Divide the set of permutations in 10 sub-tasks
int nbTasks = 10;
Vector tasks = new Vector(nbTasks);
for ( int i = 0 ; i < nbTasks ; i++){
tasks .add(new FlowShopTask(this, i, nbTasks));

}

return tasks ;
}

The objective function and pruning are implemented by the execute method:

FlowShopResult fsr;

public Result execute() {

if (! this .iHaveToSplit()) {
// Test all permutation
while((FlowShopTask.nextPerm(currentPerm)) != null) {

int currentMakespan;
fsr .makespan = ((FlowShopResult)this.bestKnownSolution).makespan;
fsr .permutation = ((FlowShopResult)this.bestKnownSolution).permutation;
if ((currentMakespan = FlowShopTask.computeConditionalMakespan(

p, currentPerm,
((FlowShopResult) this.bestKnownSolution).makespan,
timeMachine)) < 0) {

//bad branch
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int n = currentPerm.length + currentMakespan;
FlowShopTask.jumpPerm(currentPerm, n, tmpPerm[n]);
// ...

} else {
// better branch than previous best
fsr .makespan = currentMakespan;
System.arraycopy(currentPerm, 0, fsr.permutation, 0,

currentPerm.length);
r . setSolution( fsr ) ;
this .worker.newBestBound(r);

}
}

} else {
// Using the Stub for an asynchronous call
this .worker.sendSubTasksr(
((FlowShopTask) ProActive.getStubOnThis()).split());

}

// ...

r . setSolution(bestKnownSolution);
return r ;

}

The main method :

Task task = new FlowShopTask(�owShopInstance);
Manager manager = ProActiveBranchNBound.newBnB(task,

master_node);
manager.addNodesForWokers(workerNodes);
// Start solving �ow-shop
FlowShopResult r = manager.start(); // this call is asynchronous
// Do something
System.out.println(r) ;

4.5 Experiments with flow-shop

This section describes the experiments achieved for testing Grid’BnB. Experiments have
been done with a permutation optimization problem, the flow-shop. We first present and
analyze experiment results on a single cluster. Finally, we present experiment results
on a large-scale Grid, named Grid’5000.

4.5.1 Single cluster experiments

These experiments aim to choose the best search strategy with flow-shop and to deter-
mine the impact on performances of dynamically sharing GUB with communications.
We use the Nef cluster of INRIA Sophia lab, composed of 32 nodes, powered by dual-
processors AMD Opteron with a speed of 2GHz. Nodes are connected via Gigabit Ether-
net.
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Search strategies evaluation: Figure 4.10 shows benchmark results of applying dif-
ferent search strategies (described in Section 4.2.4) to flow-shop. The selected instance
of flow-shop is 16 jobs / 20 machines. Results show that FIFO is for all experiments
always the fastest, the speedup between 20 CPUs and 60 CPUs is 4.63. This is a super
linear speedup (> 3) owing to increase the total of CPUs allows a larger generation of
the search tree in parallel and thereby, improving the GUB faster to prune more none
promising branches. Breadth-first search scales with a very good speedup, the speedup
between 20 CPUs and 60 CPUs is 5.44, also super linear. The high speedup is normal
because more breadth-first search is deployed on nodes the more the tree is explored
in parallel. Depth-first search speedup is linear, 3, and for priority search the speedup
is 1.73. The speedup is particularly high with all these experiments, because with 60
CPUs the chosen flow-shop instance can be widely explored in parallel whatever the
search strategy. The built search tree rapidly provides the best solution as upper bound,
thus each process can delete many branches.
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Figure 4.10: Single cluster experiments: benchmarking search tree strategies

Experiments report very good results with super linear speedup or with speedup
under linear. Previous work have already reported these observations [LAI 84, LI 86],
and these phenomena are known as speedup anomalies.

They are mainly due to the fact that the time needed to explore the whole search
tree depends on the tree size. The branching, bounding, and the tree node processing
priority (i.e. the search strategy) impacts on the size tree.
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Evaluation of dynamically sharing the global upper bound with communication:
With the same instance of flow-shop and with the FIFO strategy, we benchmarked the
impact of dynamically sharing GUB with communications; experiments are deployed
on the same cluster as previously. We first benchmark flow-shop with communications
between workers for sharing GUB and then benchmark flow-shop without dynamically
sharing GUB between workers (no communication). In the case of no communication,
the master keeps the GUB up-to-date with all results from computed tasks; and when
a task is allocated to a worker by the master, it sets the current GUB value to the
task. Figure 4.11 shows results of solving flow-shop with and without dynamically
sharing GUB. Using communications to share GUB is always better. But the speedup,
T No Communications

T Communications , is lower for 50 CPUs than 40 CPUs, this decrease comes from the
fact that more than 40 CPUs this flow-shop instance has enough CPUs to explore the
whole tree in parallel, i.e. it is the optimal deployment.
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Figure 4.11: Single cluster experiments: sharing GUB with communications versus no dynamic
GUB sharing

These experiments on a single cluster show that dynamically sharing GUB with
communications between workers improve execution time, and that choosing the right
search strategy considerably affects performances.

4.5.2 Large-scale experiments

In order to experiment Grid’BnB on Grids, we have access to a large-scale nationwide
infrastructure for Grid research, Grid’5000.
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Grid’5000 project (G5K) [CAP 05] The G5K project aims at building a highly recon-
figurable, controllable, and monitorable experimental Grid platform gathering 9 sites
geographically distributed in France currently featuring a total of 3586 CPUs. The
main purpose of this platform is to serve as an experimental testbed for research in
Grid Computing. For the moment, 17 laboratories are involved, nation wide, in the ob-
jective of providing the community of Grid researchers a testbed allowing experiments
in all the software layers between the network protocols up to the applications.

The current plans are to assemble a physical platform featuring 9 local platform
(at least one cluster per site), each with 100 to a thousand PCs, inter-connected by
RENATER the French national education and research network. G5K is composed of a
large number of machines, which have different kinds of CPUs (dual-core architecture,
AMD Opteron 64 bits, PowerPC G5 64 bits, Intel Itanium 2 64 bits, Intel Xeon 64 bits), of
operating systems (Debian, Fedora Core 3 & 4, MacOs X, etc.), of supported JVMs (Sun
1.5 64 bits and 32 bits, and Apple 1.4.2), and of network connection (Gigabit Ethernet
and Myrinet). All clusters will be connected to RENATER with a 10Gb/s link (or at least
1 Gb/s, when 10Gb/s is not available yet).

Figure 4.12 shows the global topology of the platform.
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Figure 4.12: Grid’5000 topology

Table 4.1 describes architectures and cores (for us, a core is a CPU) distribution site
by site.

Experiments Grid experiments run with the same implementation of flow-shop, as pre-
vious single cluster experiments. The selected instance of flow-shop is now 17 jobs / 17
machines, which is more difficult to solve compared to the previous one. The search tree
strategy is FIFO and communications are used to dynamically share GUB. Results of
experiments with G5K are summarized in Figure 4.13 and Table 4.2.

Table 4.2 shows the total number of tasks generated for each experiment. The flow-
shop implementation has a ratio Task272/Task96

272/96 = 0.98, the generation of tasks is linear
with CPUs. But, between 272 and 621 CPUs, this ratio up to 1.24, the generation of
tasks does not scale with CPUs, i.e. too much tasks are generated in regard of available
CPUs.

Table 4.3 reports the distribution of CPUs by sites for each experimentation.
The dashed line in Figure 4.13 shows that the execution time strongly decrease until

272 CPUs, the speedup between 96 CPUs and 272 CPUs is 2.32. From 272 to 621 CPUs
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Cores / Sites Orsay Grenoble Lyon Rennes Sophia Bordeaux Lille Nancy Toulouse Cores total
AMD Opteron 2214 16 16
AMD Opteron 2218 200 200
AMD Opteron 246 432 112 198 148 94 984
AMD Opteron 248 128 96 106 116 446
AMD Opteron 250 252 140 392
AMD Opteron 252 40 40
AMD Opteron 275 224 224
AMD Opteron 285 104 104
Intel Itanium 2 206 206
Intel Xeon 5110 480 480
Intel Xeon 5148 LV 264 264
Intel Xeon EM64T 3GHz 102 102
Intel Xeon IA32 2.4GHz 64 64
PowerPC 64 64
Sites total 684 270 268 654 572 198 250 574 116 3586

Table 4.1: Grid’5000 sites/cluster descriptions

Table 4.2: Large-scale experiments results

# CPUs # Sites Time Tasks % of tested permutations Gathered time
96 1 107 m 1425 0.152% 165 h
100 1 104 m 1567 0.152% 167 h
200 1 60 m 2515 0.165% 181 h
255 1 51 m 3078 0.174% 195 h
272 2 46 m 2802 0.176% 171 h
296 2 45 m 3366 0.187% 184 h
300 2 44 m 3729 0.189% 196 h
422 3 45 m 4731 0.22% 227 h
452 3 41 m 5701 0.232% 255 h
488 3 41 m 5919 0.241% 255 h
492 4 40 m 5447 0.239% 251 h
521 4 37 m 6005 0.248% 258 h
621 5 35 m 6968 0.261% 267 h

the execution time is almost constant, the speedup between 272 and 621 CPUs is 1.31.
Then, the global speedup, between 96 and 621 CPUs, is 3. Our Grid’BnB flow-shop
scales well up to 272 (close to linear speedup). However, for more than 272 CPUs, the
execution time decreases slowly. Nevertheless, the solid line shows the percentage of
branches explored in the search tree, i.e. total number of tested permutations, this line
increases with the number of CPUs. This line is indeed the total work done by the
computation.

Efficiency Figure 4.14 shows the efficiency E, this value estimates how CPUs are uti-
lized for the computation. Values of E are between 0 and 1, a single-processor com-
putation and linear speedup have E = 1. Here, we consider the execution time (T )
efficiency corrected with the work (W : total number of tested permutations) because
Grid’BnB computes more work with increasing CPUs. Thus, the efficiency for n CPUs:
En = Tn/T96∗W96/Wn

96/n . The figure shows that between 96 and 300 CPUs, E is close to 1
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Figure 4.13: Large-scale experiments results

(0.9), which is very good. But, for 422 and more, E decreases to 0.8, it is still a good
value. This decrease can be explain by the fact that for experiments with less than 422
CPUs are done on 1 or 2 Grid sites and for 422 and more 3 up to 5 sites nationally-
distributed. In addition, Grid sites are heterogeneous in regards of CPUs power and
inter-site network connections.

Experiments on single cluster and large-scale Grid show that it is better to use com-
munications to dynamically share GUB, and that it is important for users to choose the
adapted search tree strategy to their problems to solve. Large experiments also show
that Grid’BnB can be used on Grid environments, we deploy flow-shop on a nationwide
Grid of 5 clusters gathering a total of 621 CPUs.

4.6 Conclusion

In this chapter we described Grid’BnB a parallel B&B framework for Grids. Grid’BnB
provides a framework to help users solve optimization problems. The framework hides
all Grids, parallelism, and distribution related issues. The framework is based on hi-
erarchical master-worker architecture with communications between processes. Com-
munications are used to share the best global upper bound to explore less parts of the
search tree and to decrease the execution time for solving optimization problems. Be-
cause Grids provide a large-scale parallel environment, we propose to organize workers
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Table 4.3: Large-scale experiments: site distribution

# CPUs Site distribution
96 sophia.helios
100 orsay
200 orsay
255 orsay
272 sophia.sol - 176

sophia.helios - 96
296 sophia.sol - 200

sophia.helios - 96
300 rennes.paraquad - 200

rennes.paravent - 100
422 sophia.sol - 200

sophia.azur - 126
sophia.helios - 96

452 sophia.helios - 184
sophia.azur - 142
lyon.sagittaire - 126

488 rennes.paraquad - 220
sophia.azur - 142
lyon.sagittaire - 126

492 rennes.paraquad - 200
lyon.sagittaire - 122
sophia.azur - 100
lille - 70

521 rennes.paraquad -202
lyon.sagittaire - 126
sophia.azur - 100
lille - 93

621 rennes.paraquad - 202
lyon.sagittaire - 126
sophia.sol - 100
sophia.azur - 100
lille - 93

in groups of communications. Groups reflects Grids topology. This feature aims to opti-
mize inter-cluster communications and to update more rapidly the global upper bound
on all processes. Grid’BnB also proposes different search tree algorithms to help users
choose the most adapted for the problem to solve. Finally, the framework allows fault-
tolerance for long-running executions.

Experiments have shown that Grid’BnB scales on a real nationwide Grid, such as
Grid’5000. We are able to deploy a permutation optimization problem, flow-shop, on up
to 621 CPUs distributed on five sites.

Finally, we believe that Grid’BnB can used for more than B&B without modification
of the framework, it may be used to do divide-and-conquer or used as farm skeleton.
More generally, Grid’BnB is framework for parallel programming that targets all em-
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Figure 4.14: Large-scale experiments: the efficiency

barrassingly parallel problems.

In the next chapter, we report large-scale experiments of Grid’BnB with the P2P
infrastructure.
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Chapter 5

Mixing Clusters and Desktop Grid

This chapter relates our large-scale experiments with the Grid’BnB framework and the
peer-to-peer infrastructure, with which we build a Grid composed of both desktop ma-
chines and clusters.

This chapter is organized as follows: first, we remember the context and point out our
motivations and objectives of these large-scale experiments; second, we report results
from experiments on a Grid that includes machines from the INRIA Sophia P2P Desktop
Grid and from the French nation-wide Grid, named Grid’5000; third, we present some
recent results from experiments that aims at dynamically acquiring numerous resources
from Grid’5000 with the peer-to-peer infrastructure.

5.1 Motivations and objectives

In previous chapters, we presented a peer-to-peer infrastructure and we experimented
it as a desktop Grid. We also described Grid’BnB, our framework for branch-and-bound,
and we experimented it on a nation-wide Grid.

This chapter aims to demonstrate that our framework and our infrastructure used
together allow large-scale utilization of Grids, which are composed of desktop machines
and clusters. In the next part of this chapter, we describe the modifications and the
improvements of both in order to reach this goal. In Chapter 2, we identified several
requirements that the infrastructure has to fulfill in order to address all Grid challenges.
Some of those requirements have been not treated in Chapter 3, which are:

• sharing clusters, this point has been not previously considered by the infrastruc-
ture, it has to propose solutions to include clusters in the Grid; and

• cross firewalls, in order to mix desktop machines and clusters, which are usually
in different local networks allowing identified and secure connections.

Furthermore, the framework was only considered with a static deployment on clus-
ters. Now, the framework has to handle a dynamic deployment, i.e resource acquisition
at runtime, and it has to dynamically keep communication groups organized because
workers may be added during the problem solving. In summary, the framework has to:

• provide dynamic resource acquisition; and

• dynamically organize workers in group to optimize communication.

87
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In addition to experiment the framework plus the infrastructure, we noticed during
experiments that it is hard to obtain a large number of resources on Grid’5000, even
with long-time before reservations.

The problem is that the platform is used by many users, we counted 567 user ac-
counts. Figure 5.1 shows the global usage of the platform. Grid’5000 currently totalizes
a total of 3586 cores (as reported by Table 4.1), which provides a total of ≈ 2.6e+6 hours
of computations a month. The figure shows a pick close to ≈ 1.4e+6. However, the figure
does not show the platform up-time. In other words, maintenance periods and failure
down times are not considered in the figure.

Figure 5.1: Grid’5000 platform usage per month and per cluster

This observation shows that it is very hard to obtain a large number of resources for
experiments. In contrast, several nodes by clusters are free for sometime few minutes
and summed they may totalize hundred of CPUs always available.

Hence, we believe that using this few-minutes-available resources may profit to CPU
intensive application, such as the n-queens. We thus propose to use the peer-to-peer in-
frastructure to dynamically acquire available resources of Grid’5000 in order to run CPU
intensive application.

In summary, the objectives of this chapter are double:

• showing that Grid’BnB can take benefit from the peer-to-peer infrastructure; and

• showing that using the peer-to-peer infrastructure over a Grid allows efficient dy-
namic resource acquisition for CPU intensive applications.
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5.2 Design and architecture

This section describes the improvements of the infrastructure and the framework in
order to support large-scale Grids. Thanks to the ProActive middleware on which we
rely, many of these issues are easily solved.

5.2.1 Sharing clusters with the peer-to-peer infrastructure

In Chapter 3, we described the implementation of the infrastructure within the Grid
middleware, named ProActive. ProActive provides a complete deployment framework
for Grids, which is described in Chapter 6.1. This deployment framework allows to de-
ploy Java Virtual Machines (JVMs) on clusters, via the job submission scheduler (such
as PBS, LSF, etc.).

With ProActive, applications do not access directly to remote JVMs but manipulate
nodes, which are execution environments for active objects (more details in the next
chapter). Thus, as we previously explained, peers of the P2P infrastructure share these
nodes.

In the infrastructure, peers use the deployment framework of ProActive to select
which resources to share. In other words, when a peer shares its local machine, the
peer uses the deployment mechanism to instantiate a node inside its local JVM. Fur-
thermore, a peer is able to share and to manage resources that are not locals. This is
simply done by using a deployment descriptor that allows to create JVMs on remote ma-
chines, such as a cluster. The choice of which resources are shared by peers is done by
the administrator of the infrastructure, i.e the installer of the infrastructure. Figure 5.2
shows connections between peers and their shared nodes.

5.2.2 Crossing firewalls

The problem of crossing firewalls is indeed solved by the ProActive middleware. ProAc-
tive provides a simple message forwarding mechanism [MAT 06], a JVM where a ProAc-
tive runtime is running can be used to route communications between two others active
objects. This feature combined to RMI/SSH as transport layer is useful to pass through
firewalls or NAT.

Concretely, this mechanism is enabled at deployment time by the deployment frame-
work. Figure 5.3 shows a peer sharing nodes on clusters located behind a firewall.

5.2.3 Managing dynamic group of workers with Grid’BnB

We already presented the implementation of Grid’BnB, and explained that groups of
workers are indeed ProActive hierarchical groups. These groups are group of groups, a
ProActive may see as a collection of active objects. Groups allow broadcast communica-
tion with all group members.

Because ProActive groups are implemented like collection, it is relatively easy to add
new elements (actives objects or groups) in such groups. We also shown, in Chapter 3.3,
that a ProActive application can use the event/listener mechanism to dynamically ac-
quire resources from the P2P infrastructure. Grid’BnB is implemented within the active
object programming model. In other words, our branch-and-bound framework can be
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considered as a common ProActive application. Hence, acquiring and adding resources
is solved by few implementation improvements. The issue is how to organize workers in
groups.

In this chapter, we target to build a Grid composed of clusters and machines from a
desktop Grid. We argued that Grid’BnB rely on a feature provided by the deployment
framework of ProActive to organize workers. This mechanism consists in tagging de-
ployed nodes with a tag to identify if nodes have been deployed by the same chain of
deployment processes. This mechanism is fully described in the next chapter.

Hence, nodes on the same cluster have the same tag. Thus it is relatively easy to
create a group with nodes of same tag. The problem is with nodes from the desktop Grid
because each node is deployed by a different process and has an unique tag. In order
to solve this issue, we decide to gather all nodes, which have a single tag, in the same
group. In other words, the main group contains all workers that are running on a node,
which has a unique tag, and other group are created if at least two nodes have the same
tag.

5.3 Large-scale experiments: mixing desktops and clusters

This section presents the results of large-scale experiments on a Grid composed of desk-
tops machines and clusters. First, we experiment this Grid with the n-queen applica-
tion, which has no communication between workers. Second, we experiment the flow-
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shop application, which has communication between workers.

5.3.1 Environment of experiments

Figure 5.4 shows the Grid used for our experiments. This Grid is a mix of the IN-
RIA Sophia P2P Desktop Grid (InriaP2P), described in Chapter 3.4.2, and clusters from
Grid’5000 (G5K), described in Chapter 4.5.2. The left of the figure shows the INRIA
Sophia P2P Desktop Grid wherein INRIA-2424 peers are used as registries (all reg-
istries use themselves as registries); and at fixed moments the rest of INRIA-ALL ma-
chines join the P2P infrastructure by contacting those registries.

In addition, the right of the figure shows the G5K platform, clusters of G5K are
connected to the P2P infrastructure by a few INRIA-2424 peers, and each of these peers
handles a G5K site. These peers do not share their local JVMs but share JVMs deployed
on clusters. G5K and INRIA networks are both closed network with only few SSH access
points, and G5K is a NAT, thus communications between INRIA and G5K are tunneled
via SSH.

5.3.2 Experiments with n-queens

We took the same application as previously, the n-queens (see Chapter 3.4.1), and ran
it on a Grid that is a mix of machines from INRIA Sophia P2P Desktop Grid and from
clusters of G5K.

Experiments run with n = 22. Figure 5.5 shows all results. Counting up all the
machines, we reached 1007 CPUs. The execution time decreases with a large number of
CPUs on a heterogeneous Grid, mix of desktop and clusters.

We show that an embarrassingly parallel application, such as n-queens, benefits of
the large number of CPUs provided by our P2P infrastructure, even if this Grid is highly
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Figure 5.4: Mixing Desktop and Clusters: environment of experiment structure

heterogeneous. For that kind of application, mixing desktop and cluster machines is
beneficial.

5.3.3 Experiments with flow-shop

To illustrate that our P2P infrastructure can be used to deploy communicating applica-
tions, we consider an application for solving flow-shop problems, see Chapter 4.4.1.

The implementation of flow-shop with Grid’BnB has a low communication/compu-
tation ratio, even if at the beginning of the computation the application has to acquire
nodes and to deploy workers on all CPUs. Workers are intensively broadcasting new
better solutions. The intensive phase takes 20 minutes for the run of one hour on 628
CPUs. With this run we were able to measure the communication size on 116 CPUs
of the G5K Sophia cluster. We measured 143 MB of network traffic inside the cluster
for the first 20 minutes. The bandwidth used is about 120 KB/s. After, there are only
sporadic communications until the best solution is found.

Figure 5.6 shows all results of flow-shop computations with an instance of 17 jobs/17
machines. An analysis of Figure 5.6 shows that computation time decreases with the
number of used CPUs. However, the increase in execution time between 201 and 220
comes from a communication bottleneck between workers of INRIA-2424, which are
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Figure 5.5: Mixing Clusters and Desktops: n-queens with n = 22 benchmark results

desktop machines, and workers of G5K Sophia, which are clusters. Communications
between INRIA P2P Desktop Grid and G5K are tunneled in SSH. This bottleneck can
also be observed on the run with 321 CPUs on three sites. The lower impact of bottleneck
with 313 CPUs can be explain by the distribution of the tasks and by the fact that there
is only one cluster. Then the last experimentation with 628 CPUs has an execution time
close to the bench with 346 CPUs, we explain that by a long phase of acquiring resources
and the creation of workers, 11 minutes, opposed to only 6 minutes for 346 CPUs.

In addition, all these benchmarks were realized during working days, so usual users
have a higher priority to execute their processes.

To conclude, we have been able to deploy a communicating application using a P2P
infrastructure on different sites which provided 628 CPUs. Those CPUs were composed
of heterogeneous architectures, and came from desktop machines and clusters.

5.4 Peer-to-Peer Grid experiments

This section reports results of experimenting the P2P infrastructure over Grid’5000. We
aim to demonstrate that a CPU intensive application, such as n-queens, can take benefit
of using Grid resources, which are available for few minutes.

We reported that a Grid platform as Grid’5000 is over-loaded in terms of users and
available nodes. However, we observed that many nodes are free, i.e not reserved or
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used, for few minutes. Thus, we believe that a dynamic infrastructure, such as our peer-
to-peer infrastructure, can gather these resources and can provide them to applications.
We also think an application of type master-worker with tasks that require few minutes
to execute, can be deployed on this kind of highly dynamic Grids.

5.4.1 Experiment design

In order to deploy our infrastructure, we need to have some Grid nodes reserved for all
the time of the experiments. Hence, one or two nodes by sites are reserved before each
experiments and for at least 1 hour (the expected experiment time). These nodes are
used to host our infrastructure registries, and like with the INRIA Sophia P2P Desktop
Grid registries are themselves registry for registries.

Finally, a script is started for Grid sites. This script continually submits reserva-
tions to obtain free nodes. For all obtained nodes, a peer is started and added to the
infrastructure.

5.4.2 Experiments results

Table 5.1 reports all results of our 48 experiments. These experiments have used from 2
to 11 clusters of Grid’5000, at the same time. Also, the n-queens used from 312 to 1384
CPUs at the same time. The average of CPUs for all experiments is between 301 and



Section 5.4. Peer-to-Peer Grid experiments 95

917.

Because, all benchmarks are done each time with a different infrastructure, in terms
of number of clusters used, different clusters, and the time of CPU availabilities, it does
not make sense to compare all experiments on the same graph. However, Figure 5.7
compares experiments, the top graph shows the experiment time as function of the max-
imum CPUs working concurrently during the benchmark, the bottom graph shows the
experiment time as function of the average of CPUs working concurrently during the
benchmark.

200 400 600 800 1000 1200 1400
Total # of CPUs

20

25

30

35

40

45

50
T

im
e
 i

n
 m

in
u

te
s

Maximum CPUs

NQueens with n=22

300 400 500 600 700 800 900 1000
Total # of CPUs

20

25

30

35

40

45

50

T
im

e
 i

n
 m

in
u

te
s

Average CPUs

NQueens with n=22

Figure 5.7: Summary of all experiments

Figure 5.8 compares for each benchmark the maximum number of CPUs to the av-
erage. The gap between the top of CPUs working concurrently and the average is for
the majority of benchmarks more than 100 CPUs. In contrast, for experiments with less
CPUs, about 350, this gap is almost null.

This bar chart helps us to determine what is a "perfect" benchmark. A perfect bench-
mark for us is a benchmark with the same (or almost the same) number of maximum
CPUs and average CPUs. Figure 5.9 reports all results of one of these perfect experi-
ments. On the top graph, the diamond plot represents the number of tasks computed
by minutes, and the triangle plot represents the number of CPUs working by minutes.
The left pie chart shows the CPUs distribution by sites. The right pie chart then shows
the number of tasks computed by sites.

This experiment shows that the number of CPUs stayed almost constant for the



96 Chapter 5. Mixing Clusters and Desktop Grid

Exp-0Exp-1Exp-2Exp-3Exp-4Exp-5Exp-6Exp-7Exp-8Exp-9Exp-10Exp-11Exp-12Exp-13Exp-14Exp-15Exp-16Exp-17Exp-18Exp-19Exp-20Exp-21Exp-22Exp-23Exp-24Exp-25Exp-26Exp-27Exp-28Exp-29Exp-30Exp-31Exp-32Exp-33Exp-34Exp-35Exp-36Exp-37Exp-38
0

200

400

600

800

1000

1200

1400

T
o
ta

l 
#

 o
f 

C
P

U
s

Max vs Avg CPUs

Maximum CPUs
Average CPUs
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whole benchmark, and the peak of tasks is due to the fact that the first n-queens tasks
are smaller to solve.

In contrast, some benchmarks are considered as "bad". For instance, Figure 5.10
reports a bad experiment. Between the 30 and 35 minute of the experiments, we notice
a drop of the number of CPUs and computed tasks, this interval measures almost 4
minutes. After an investigation, we determined that drop is due to the LDAP servers of
the Grid’5000 platform, which do not support the load of requests from our experiments.
This problem has been reported to the platform staff and will be fixed in the next update
of the platform, which is scheduled for mid-September.

Figure 5.11 and Figure 5.12 report large-scale experiments involving more than 1000
CPUs.

5.5 Conclusion

In this chapter, we demonstrated with experiments that Grid’BnB on top of the peer-
to-peer infrastructure allows large-scale deployments on Grids, which are composed of
desktop machines and clusters.

We also showed that the peer-to-peer infrastructure can be used as a Grid infrastruc-
ture for gathering available resource from a real Grid platform. Hence, a CPU intensive
application, such as n-queens, can dynamically acquire them for computing, even if re-
sources are available for few minutes.
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Table 5.1: The P2P infrastructure over Grid’5000 experiments with 22-queens

Name # of Sites Max # CPUs Avg # CPUs Total CPU Time Time
n22.log.1 2 368 353 278h 50m 47s 0h 46m 57s
n22.log.3 6 506 409 287h 49m 33s 0h 41m 43s
n22.log.4 7 552 419 305h 30m 19s 0h 44m 25s
n22.log.5 4 842 653 281h 59m 19s 0h 29m 9s
n22.log.6 6 1056 859 277h 29m 39s 0h 31m 55s
n22.log.7 7 634 422 294h 18m 44s 0h 41m 21s
n22.log.8 8 910 822 252h 8m 44s 0h 30m 51s
n22.log.9 10 986 714 271h 26m 2s 0h 46m 54s
n22.log.10 9 702 534 260h 58m 53s 0h 32m 21s
n22.log.11 9 764 713 257h 55m 54s 0h 40m 8s
n22.log.12 5 362 345 247h 17m 19s 0h 46m 54s
n22.log.13 11 848 756 258h 39m 36s 0h 38m 12s
n22.log.14 10 856 751 263h 14m 35s 0h 36m 7s
n22.log.15 8 700 642 250h 1m 2s 0h 38m 33s
n22.log.16 5 312 301 241h 26m 57s 0h 49m 15s
n22.log.18 8 836 746 259h 35m 22s 0h 34m 14s
n22.log.19 8 826 631 280h 6m 13s 0h 42m 18s
n22.log.20 8 422 378 249h 17m 49s 0h 43m 2s
n22.log.21 7 522 483 242h 18m 12s 0h 31m 38s
n22.log.22 7 590 538 248h 59m 55s 0h 33m 44s
n22.log.23 6 690 648 258h 43m 51s 0h 41m 28s
n22.log.24 7 748 653 255h 12m 47s 0h 44m 54s
n22.log.25 10 754 694 253h 59m 22s 0h 27m 50s
n22.log.26 9 770 673 257h 12m 7s 0h 44m 29s
n22.log.27 7 504 461 251h 27m 4s 0h 36m 48s
n22.log.28 10 546 477 251h 17m 16s 0h 32m 59s
n22.log.29 11 1060 916 253h 34m 31s 0h 34m 54s
n22.log.30 6 344 331 246h 37m 1s 0h 46m 10s
n22.log.31 7 1016 826 244h 59m 32s 0h 35m 23s
n22.log.32 7 684 621 246h 50m 20s 0h 30m 46s
n22.log.33 10 834 702 250h 53m 42s 0h 32m 17s
n22.log.34 9 930 767 250h 34m 53s 0h 32m 48s
n22.log.35 8 804 702 245h 47m 55s 0h 28m 44s
n22.log.38 11 1252 879 263h 30m 20s 0h 27m 46s
n22.log.39 7 692 600 268h 56m 59s 0h 36m 41s
n22.log.40 9 1384 917 257h 5m 43s 0h 37m 30s
n22.log.41 9 948 712 252h 5m 8s 0h 29m 46s
n22.log.42 8 914 781 247h 27m 52s 0h 41m 34s
n22.log.45 11 742 561 282h 8m 49s 0h 37m 1s
n22.log.46 5 416 378 285h 23m 59s 0h 48m 12s
n22.log.48 11 674 600 254h 22m 4s 0h 43m 44s
n22.log.49 8 528 464 262h 5m 54s 0h 36m 43s
n22.log.50 9 604 485 283h 55m 29s 0h 37m 52s
n22.log.51 9 642 587 252h 15m 43s 0h 35m 15s
n22.log.52 9 694 596 254h 20m 13s 0h 38m 21s
n22.log.53 10 1076 806 235h 46m 12s 0h 24m 24s
n22.log.54 9 616 486 252h 21m 6s 0h 30m 25s
n22.log.56 8 842 722 243h 58m 4s 0h 23m 22s



Section 5.5. Conclusion 99

 

Experimentation time in minutes

0

100

200

300

400

500

600

#
 o

f 
C

P
U

s

Experimentation: n22.log.4

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

3000

#
 o

f 
T

a
sk

s

capricorne.lyon

16.7%

sagittaire.lyon

16.0%

icluster2.grenoble

12.0%

azur.sophia
8.4%

helios.sophia

3.6%

bordeaux

36.7%

lille
6.5%

CPUs distribution for: n22.log.4

capricorne.lyon

20.3%

sagittaire.lyon

21.8%

icluster2.grenoble

7.4%

azur.sophia
6.7%

helios.sophia

4.3%

bordeaux

31.7%

lille
7.7%

Tasks distribution for: n22.log.4

Figure 5.10: "Bad" experimentation n22.log.4



100 Chapter 5. Mixing Clusters and Desktop Grid

Experimentation time in minutes

0

200

400

600

800

1000

1200

1400

#
 o

f 
C

P
U

s

Experimentation: n22.log.38

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

#
 o

f 
T

a
sk

s

capricorne.lyon
4.0%

sagittaire.lyon

7.2%

parasol.rennes

4.8%

paravent.rennes

14.9%

azur.sophia

11.0%

helios.sophia
14.4%

orsay

19.2%

nancy

5.6%

bordeaux

8.0% lille

6.9%

toulouse4.0%

CPUs distribution for: n22.log.38

capricorne.lyon

5.9%

sagittaire.lyon

10.7%

parasol.rennes

3.0%

paravent.rennes

8.2%

azur.sophia

19.7%

helios.sophia

26.4%

orsay

9.7%

nancy

3.0%

bordeaux

5.8%
lille

5.1%

toulouse2.4%

Tasks distribution for: n22.log.38

Figure 5.11: Large-scale experiments: 1252 CPUs concurrently working from 11 clusters



Section 5.5. Conclusion 101

Experimentation time in minutes

200

400

600

800

1000

1200

1400

#
 o

f 
C

P
U

s

Experimentation: n22.log.40

0 5 10 15 20 25 30 35 40
200

400

600

800

1000

1200

1400

1600

1800

#
 o

f 
T

a
sk

s

capricorne.lyon
3.6%

sagittaire.lyon

6.5%

parasol.rennes

7.2%

paravent.rennes

7.4%

helios.sophia

11.3%

orsay

39.1%

bordeaux

9.1%
lille

8.8%

toulouse
6.8%

CPUs distribution for: n22.log.40

capricorne.lyon
3.8%

sagittaire.lyon

6.9%

parasol.rennes

8.1%

paravent.rennes

8.0%

helios.sophia

14.3%

orsay

33.8%

bordeaux

7.2%

lille

10.8%

toulouse
7.1%

Tasks distribution for: n22.log.40

Figure 5.12: Large-scale experiments: 1384 CPUs concurrently working from 9 clusters
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Chapter 6

Advanced Features and
Deployment

The first objective of this thesis is to provide a dynamic infrastructure for Grid com-
puting. This infrastructure is based on an unstructured peer-to-peer architecture that
allows to mix desktop machines and clusters.

The second objective is a parallel branch-and-bound framework for Grids, which per-
mits to solve combinatorial optimization problems. This framework relies on the master-
worker paradigm with communications between workers to increase the computation
speedup.

The link between our framework and our infrastructure is the deployment. This the-
sis work has for context the Java ProActive Grid middleware. Thereby in this chapter
we introduce the deployment framework of ProActive. Next, we present our first im-
provement that allows localization of nodes on Grids. This mechanism is used by the
branch-and-bound framework to organize workers in groups for reducing communica-
tion cost.

After that, we describe our second improvement of the deployment in ProActive with
the activation of non-functional services, named technical services. These services are
fault-tolerance or load-balancing for instance.

Then, we propose the virtual nodes descriptors, which is a kind of application descrip-
tor. This application descriptor allows developers to specify deployment constraints to
their applications. Constraints are for instance technical services to deploy, minimum
number of nodes, or even computing architectures.

Finally, we describe in details a technical service for load-balancing. This load-
balancing mechanism depends on the P2P infrastructure presented in this thesis.

6.1 Context: ProActive deployment framework

We described the ProActive Grid middleware in Section 2.4. Especially, we presented
the programming model and some other features but we have not detailed the deploy-
ment framework.

In this section, we fully describe the deployment framework of ProActive.
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6.1.1 Deployment model

The deployment of Grid applications is commonly done manually through the use of re-
mote shells for launching the various virtual machines or daemons on remote computers
and clusters. The commoditization of resources through Grids and the increasing com-
plexity of applications are making the task of deploying central and harder to perform.

ProActive succeeded in completely avoiding scripting for configuration, getting com-
puting resources, etc. ProActive provides, as a key approach to the deployment problem,
an abstraction from the source code in order to gain in flexibility [BAU 02]. A first prin-
ciple is to fully eliminate from the source code the following elements:

• machine names,

• creation protocols,

• registry and lookup protocols.

The goal being to deploy any application anywhere without changing the source code.
The deployment sites are called Nodes, and correspond for ProActive to JVMs which con-
tain active objects.

To answer these requirements, the deployment framework in ProActive relies on
XML descriptors. These descriptors use a specific notion, Virtual Nodes (VNs):

• a VN is identified by a name (a simple string),

• a VN is used in a program source,

• a VN, after activation, is mapped to one or to a set of actual ProActive Nodes,
following the mapping defined in an XML descriptor file.

A VN is a concept of a distributed program or component, while a node is actually
a deployment concept: it is an object that lives in a JVM, hosting active objects. There
is of course a correspondence between VNs and nodes: the function created by the de-
ployment, the mapping. This mapping is specified in the deployment descriptor. By
definition, the following operations can be configured in the deployment descriptor:

• the mapping of VNs to nodes and to JVMs,

• the way to create or to acquire JVMs,

• the way to register or to lookup VNs.

Figure 6.1 summarizes the deployment framework provided by the ProActive mid-
dleware. Deployment descriptor can be separated in two parts: mapping and infrastruc-
ture. The VN, which is the deployment abstraction for applications, is mapped to nodes
in the deployment descriptor and nodes are mapped to physical resources, i.e. to the
infrastructure.

6.1.2 Retrieval of resources

In the context of the ProActive middleware, nodes designate physical resources from a
physical infrastructure. They can be created or acquired. The deployment framework
is responsible for providing the nodes mapped to the virtual nodes used by the appli-
cation. Nodes may be created using remote connection and creation protocols. Nodes
may also be acquired through lookup protocols, which notably enable access to the P2P
infrastructure as explained below.
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Figure 6.1: Descriptor-based deployment

6.1.2.1 Creation-based deployment

Machine names, connection and creation protocols are strictly separated from applica-
tion code, and ProActive deployment descriptors provide the ability to create remote
nodes (remote JVMs). For instance, deployment descriptors can use various protocols:

• local

• ssh, gsissh, rsh, rlogin

• lsf, pbs, sun grid engine, oar, prun

• globus (GT2, GT3, and GT4), unicore, glite, arc (nordugrid)

Deployment descriptors allow to combine these protocols in order to create seam-
lessly remote JVMs, e.g. log on a remote cluster frontend with ssh, and then use pbs to
book cluster nodes to create JVMs on them. All processes are defined in the infrastruc-
ture part of the descriptor.

In addition, the JVM creation is handled by a special process, localJVM, which starts
a JVM. It is possible to specify the classpath, the Java install path, and all JVM argu-
ments. In addition, it is in this process that the deployer specifies which transport layer
the ProActive node uses. For the moment, ProActive supports as transport layer: RMI,
HTTP, RMIssh, and Ibis [NIE 05].
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6.1.2.2 Acquisition-based deployment

The deployment framework also provides the opportunity to acquire nodes, instead
of creating them. In the context of this thesis, we presented the P2P infrastructure
(see Chapter 3), which allows the deployment framework to acquire previously created
nodes. The infrastructure also provides the capability of dynamic deployment, i.e. ac-
quiring more nodes at runtime.

6.1.3 Large-scale usages

It would be difficult to qualify a middleware as a Grid middleware without demonstrat-
ing its Grid capabilities: deployment on a large number of hosts from various organiza-
tions, on heterogeneous environments and using different communication and connec-
tion protocols.

In the context of this thesis, we shown in Section 3.4 that ProActive with the P2P
infrastructure can be used for long running experiments. Likewise in Section 5.3, we
illustrated the capabilities of the P2P infrastructure for large-scale deployments. In
addition to these large-scale experiments, we outline the Grid PlugTests events, which
demonstrate the abilities of ProActive for large-scale usages.

The Grid PlugTests events held at ETSI in 2004, 2005, and 2006 demonstrated the
capacity of the ProActive library to create virtual organizations and to deploy applica-
tions on various clusters from various locations. The first Grid PlugTests event [ETS 05b]
gathered competing teams, which had to solve the n-queens problems using the Grid
built by coordinating universities and laboratories of 20 different sites in 12 different
countries, resulting in 800 processors and a computing power of 100 Gigaflops (SciMark
2.0 benchmark for Java). In the second Grid PlugTests [ETS 05a] event, a second com-
putational problem was added: the permutation flow-shop. Heterogeneous resources
from 40 sites in 13 countries were federated, resulting in a 450 Gigaflops grid, with a
total of 2700 processors. In the third Grid PlugTests [ETS 06] event, a 1700 Gigaflops
Grid from 22 sites in 8 countries was provided to competing teams in order to deploy
n-queens and flow-shop on a total Grid of 4130 processors.

6.2 Grid node localization

ProActive succeeds in completely avoiding scripts for configuration, getting computing
resources, and launching the computation. ProActive provides, as a key approach to the
deployment problem, an abstraction of the physical infrastructure from the source code
to gain in flexibility (see Section 6.1).

In the context of this thesis, we proposed to organize workers in groups for optimiz-
ing the communications in our B&B framework (see Chapter 4). The selection criterion
for group acceptance for a worker is its physical localization on a cluster. Therefore,
the node localization on the Grid is important for an efficient implementation of our
Grid’BnB framework. Hence we propose a mechanism to localize nodes on Grids. This
mechanism can also be used by all kinds of applications to optimize the communication
between active objects distributed on Grids and/or to do data localization.

The ProActive deployment framework provides a high-level abstraction of the un-
derlying physical infrastructure. Once deployed, the application cannot find out the
topology of the physical infrastructure on which it is deployed. In other words, the
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deployment is abstracted into VNs. Within ProActive, virtual nodes represent the ap-
plication topology, for instance in our B&B framework the logical topology should be two
VNs, one for master/sub-masters and a second for workers.

Because applications usually need to organize active objects in groups for optimizing
communications between clusters, the abstraction of the physical infrastructure laid by
the ProActive deployment framework prevents easy resource localization. For instance,
programmers have to compare node addresses to determine if two nodes are deployed on
the same cluster. But, two nodes may have the same sub-net address on different clus-
ters, with network of NATs. Hence, programmers need to have a strong knowledge in
network programming for using metric functions, such as latency, to determine if nodes
are close. Consequently, organizing workers in group by clusters and optimizing com-
munication between clusters is a very difficult task. Because of the strong abstraction
of the physical infrastructure, we introduce a new mechanism in the ProActive deploy-
ment framework to identify nodes, which are deployed on the same cluster or even on
the same machine.

The creation of a node is the result of a deployment graph (a directed acyclic graph:
DAG) combined with connection protocols. This deployment graph is specified within
the deployment descriptor. The deployment node tagging mechanism proposed here
aims to tag nodes in regard of the deployment graph on which they are mapped in the
deployment descriptor. This tag will allow the application to organize groups in regard
to the deployment process that created the node.

The virtual node is indeed the root node of the deployment graph. Then the deploy-
ment process explores the DAG in breadth-first order. A node of this DAG is a connection
protocol to instantiate and a leaf node is the JVM creation.

Figure 6.2 shows the process of tagging nodes. The tag is built by concatenating
identifiers added at each level of the building of the deployment graph. At the beginning
of the deployment, a new tag is instantiated for each virtual node. For leaf nodes of the
DAG, which are JVM creations, no identifier is added. Therefore, all nodes deployed
with the same path in the DAG have the same tag.

With this mechanism, all deployed nodes are tagged with an identifier at deployment
time. The purpose of this tag is that if several nodes have the same tag value they have
been deployed by the same deployment process. As a result, nodes with the same tag
have a high probability to be located in the same cluster and/or the same local network.

The tag is an abstraction of the physical infrastructure; it provides more information
about how nodes have been deployed. It is now possible to know at the application level
that the same deployment graph has deployed two nodes.

The deployment tag can be used for instance by applications to optimize commu-
nication between nodes or to do data localization. More especially Grid’BnB uses the
deployment tag to dynamically organize worker communications between clusters. In
this context, Figure 6.3 shows the deployment result of a single virtual node on three
clusters: clusterA, clusterB, and clusterC. The deployment has returned nine nodes: four
nodes on clusterA, two on clusterB, and three on clusterC. The node tag mechanism has
tagged nodes on clusterA with tag 0-0, tag 0-1 on clusterC, and tag 0-2 on clusterB. Tags
are finally used to organize workers in groups of communication to optimize communi-
cation between clusters.

Follow, the code of this example for deploying the virtual node Workers described by
the deployment descriptor DeploymentDescriptorFile.xml:
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Figure 6.2: Deployment tag mechanism

// Activating deployment of virtual node Workers
ProActiveDescriptor pad = ProActive.getProactiveDescriptor("DeploymentDescriptorFile.xml");
pad.activateMapping("Workers");
VirtualNode vnWorkers = pad.getVirtualNode("Workers");

// Getting ProActive deployed nodes
Node[] workerNodes = vnWorkers.getNodes();

With deployed nodes workerNodes, it is now possible to know if nodes are deployed
by the same list of processes. For instance, an application can group active objects with
respect to the deployment tag:

// For each node: get the deployment tag, instantiate a new worker, and add the worker in the
good group

for (Node node: workerNodes) {
// Getting deployment tag for the node
DeploymentTag tag = node.getNodeInformation().getDeploymentTag();

// Creating a new active object, Worker, on the remote node
Worker worker = (Worker) ProActive.newActive(Worker.class.getName(), null, node);

// Adding the new worker in its group with respect to its deployment tag
groupsOfWorkers.add(worker, tag);

}

The deployment framework featured by ProActive succeeded at deploying applica-
tion on large-scale Grids, as shown by Section 6.1.3. But, the abstraction of the physical
infrastructure is harder to allow easy localization of nodes. Therefore, we extend the
deployment framework with the presented node tagging mechanism, which allows ap-
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Figure 6.3: Application of node tagging to Grid’BnB for organizing workers in groups

plications to determine if two nodes has been deployed by the same deployment graph.
In addition, we use this mechanism in the implementation of Grid’BnB (see Sec-

tion 4.3) for optimizing communications between clusters.
However, the node tagging cannot be optimal with the P2P infrastructure, presented

in this thesis (see Chapter 3). Nodes are firstly deployed and tagged by peers; and then
when the application acquires nodes from the infrastructure, its deployment process
overwrite the previous tag with a new one, which is identical for all returned nodes. In
Section 7.1.2.1 we present the concept of node family to solve this issue.

6.3 Technical services for Grids

The last decade has seen a clear identification of the so called Non-Functional aspects for
building flexible and adaptable software. In the framework of middlewares, e.g. busi-
ness frameworks such as the Enterprise JavaBeans (EJB) [MIC 01], architects have
been making a strong point at separating the application operations, the functional as-
pects, from services that are rather orthogonal to it: transaction, persistence, security,
distribution, etc.

The frameworks, such as EJB containers (JBoss, JOnAs, etc.), can further be config-
ured for enabling and configuring such non-functional aspects. Hence, the application
logic is subject to various settings and configuration, depending of the context. Over-
all, it opens the way to effective component codes usable in various contexts, with the



110 Chapter 6. Advanced Features and Deployment

crucial feature of parameterization: choosing at deployment time various Technical Ser-
vices to be added to the application code. In the framework of Grids, current platforms
are falling short to provide such flexibility. One cannot really add and configure fault-
tolerance, security, load-balancing, etc. without intensive modification of the source code.
Moreover, there are no coupling with the deployment infrastructures.

In an attempt to solve this shortcoming of current Grid middlewares, we propose to
improve ProActive deployment framework with a mechanism for defining such Techni-
cal Services dynamically, based on the application needs, potentially taking into account
the underlying characteristics of the infrastructure.

6.3.1 Technical services principles

The concept of non-functional requirements, i.e. technical services, was first introduced
in the field of component models. Such models allow a clear separation between the
functional code written by the developer and the non-functional services provided by
the framework. For J. Kienzle and R. Guerraoui [KIE 02] a technical service must be
developed by an expert in the field, such as an expert in load-balancing for implement-
ing a load-balancing service, because a field expert can provide a good quality-of-service
for a large-scale of applications.

In the EJB [MIC 01] framework, technical services are specified by Sun Microsys-
tems; in the Corba Component Model (CCM) [020 99], they are provided by CORBA.
These services are at the component container level, i.e. they are parts of the frame-
work. For all these frameworks, users specify and configure technical services at the
deployment time. Consequently, users have choice between few technical services im-
posed by the models, thus a fault-tolerance expert cannot propose her own solution.
Then, users are limited in their choices, they cannot choose between different versions
or implementations of the same service.

In the field of Grids, the Open Grid Services Architecture (OGSA) [FOS 02] defines
a mechanism for creating, managing, and discovering Grid services, which are network-
enabled entities that provide some capability through the exchange of messages. The
OGSA specifies a uniform service semantic that allows users to build their Grid applica-
tions by assembling some services from enterprises, service providers, and themselves.

Some parts of an application may require specific non-functional services, such as
security, load-balancing, or fault-tolerance. These constraints can only be expressed by
the deployer of the application because she is the only one that can configure them for
the physical infrastructure.

Because the deployment infrastructure is abstracted into virtual nodes, we propose
to express these non-functional requirements as contracts [FRØ 98] in deployment de-
scriptors (Figure 6.4). This allows a clear separation between the conceptual archi-
tecture using virtual nodes and the physical infrastructure where nodes exist or are
created; it maintains a clear separation of the roles: the developer implements the ap-
plication without taking into account the non-functional requirements; and the deployer,
considering the available physical infrastructure, enforces the requirements when writ-
ing the mapping of virtual nodes in the deployment descriptor. Then, the expert imple-
ments and provides non-functional services as technical services. Moreover, we propose
to leverage the definition of deployment non-functional services with the introduction of
dynamically applicable technical service.
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Figure 6.4: Deployment roles and artifacts

Unlike component frameworks, our technical services mechanism is an extensible
model that allows programmer experts to propose their own implementation of non-
functional services. Like EJB and CCM, users specify and configure the technical service
at the deployment time.

Unlike our approach, the OGSA does not limit services to be only non-functional;
for example a Grid service can be a cluster for data storage. On the other hand, non-
functional services are parts of the architecture model and users cannot configure secu-
rity or fault-tolerance for their own applications.

6.3.2 Technical services framework

A technical service is a non-functional requirement that may be dynamically fulfilled at
runtime by adapting the configuration of selected resources.

From the expert programmer point of view, a technical service is a class that imple-
ments the TechnicalService interface. This class defines how to configure a node. From
the deployer point of view, a technical service is a set of ”key-value” tuples, each of them
configuring a given aspect of the application environment.

For instance, for configuring fault-tolerance, a FaultToleranceService class is provided;
it defines how the configuration is applied from a node to all the active objects hosted by
this node. The deployer of the application can then configure in the deployment descrip-
tor the fault-tolerance using the technical service XML interface.

A technical service is defined as a stand-alone block in the deployment descriptor. It
is attached to a virtual node (it belongs to the virtual node container tag); the configu-
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ration defined by the technical service is applied to all the nodes mapped to this virtual
node. A technical service is defined as follows:

<technicalServiceDe�nition id = "myService" class="services.Service1">
<arg name="name1" value="value1"/>
<arg name="name2" value="value2"/>

</technicalServiceDe�nition>

The class attribute defines the implementation of the service, a class which must
implement the TechnicalService interface:

public interface TechnicalService {
public void init (Map argValues);
public void apply(Node node);

}

The configuration parameters of the service are specified by arg tags in the deploy-
ment descriptor. Those parameters are passed to the init method as a map associating
the name of a parameter as a key and its value. The apply method takes as parameter
the node on which the service must be applied. This method is called after the creation
or acquisition of a node, and before the node is used by the application.

A technical service is attached to a virtual node as following:

<virtualNodesDe�nition>
<virtualNode name="virtualNode1" serviceRefid="myService"/>
</virtualNodesDe�nition>

Figure 6.5 summarizes the deployment framework with the added part for non-
functional aspects.

ProActive provides a mechanism for load-balancing active objects (see Section 6.5),
the drawback of this work was that the activation of the mechanism is at the code level.
This service is now ported as a technical service, in order to start and configure load-
balancing at deployment time. The implementation of the load-balancing technical ser-
vice is:

public class LoadBalancingTS implements TechnicalService {

public void init (Map argValues) {
String metricFactoryName = (String) argValues.get("MetricFactory");
MetricFactory mf = (MetricFactory) Class.forName(metricFactoryName).

newInstance();
LoadBalancing.activate(mf);

}

public void apply(Node node) {
LoadBalancing.addNode(node);

}
}

The implementation does the same thing of what the developer does for activating
load-balancing at source code level.

Two or several technical services could be combined if they touch separate aspects.
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Figure 6.5: Deployment descriptor model with the technical service part

Indeed, two different technical services, which are conceptually orthogonal, could be
incompatible at source code level.

In practice, there is an incompatibility in the implementation of fault-tolerance and
load-balancing services, developed by two different programmers. That is why a virtual
node can be configured by only one technical service. However, combining two technical
services can be done at source code level, by providing a class extending TechnicalService
that defines the correct merging of two concurrent technical services.

6.3.3 A complete example: fault-tolerant flow-shop on peer-to-peer

This section illustrates the concept of dynamically deploying and configuring techni-
cal services: it presents a use case involving the deployment of an application with
some fault-tolerance requirements on the P2P infrastructure (presented in Chapter 3);
it demonstrates how technical services help resolving deployment in the most suitable
way. Beforehand, an explanation of the fault-tolerance mechanism and configuration in
ProActive is provided, which is essential to the understanding of this use case.

6.3.3.1 Fault-tolerance in ProActive

As the use of desktop Grids goes mainstream, the need for adapted fault-tolerance mech-
anisms increases. Indeed, the probability of failure is dramatically high for such sys-
tems: a large number of resources imply a high probability of failure of one of those
resources. Moreover, public Internet resources are by nature unreliable.



114 Chapter 6. Advanced Features and Deployment

Rollback-recovery [ELN 96] is one solution to achieve fault-tolerance: the state of the
application is regularly saved and stored on a stable storage. If a failure occurs, a pre-
viously recorded state is used to recover the application. Two main approaches can be
distinguished: the checkpoint-based [MAN 99] approach, relying on recording the state
of the processes, and the log-based [ALV 98] approach, relying on logging and replaying
inter-process messages.

Fault-tolerance in ProActive is achieved by rollback-recovery [DEL 07]; two different
mechanisms are available. The first one is a Communication-Induced Checkpointing
protocol (CIC): each active object has to checkpoint at least every TTC (Time To Check-
point) seconds. Those checkpoints are synchronized using the application messages to
create a consistent global state of the application [CHA 85]. If a failure occurs, every
active object, even the non faulty one, must restart from its latest checkpoint. The sec-
ond mechanism is a Pessimistic Message Logging protocol (PML): the difference with
the CIC approach is that there is no need for global synchronization, because all the
messages delivered to an active object are logged on a stable storage. Each checkpoint
is independent: if a failure occurs, only the faulty process has to recover from its latest
checkpoint.

Basically, those two approaches can be compared on two metrics: the failure-free
overhead, i.e. the additional execution time induced by the fault-tolerance mechanism
without failure, and the recovery time, i.e. the additional execution time induced by a
failure during the execution. The failure-free overhead induced by the CIC protocol is
usually low [BAU 05], as the synchronization between active objects relies only on the
messages sent by the application. Of course, this overhead depends on the TTC value,
set by the programmer; the TTC value depends mainly on the assessed frequency of
failures. A small TTC value leads to very frequent global state creation and thus to a
small rollback in the execution in case of failure. But a small TTC value leads also to
a higher failure free overhead. The counterpart is that the recovery time could be high
since all the application must restart after the failure of one or more active object.

As for CIC protocol, the TTC value impacts on the global failure-free overhead, but
the overhead is more linked to the communication rate of the application. Regarding
the CIC protocol, the PML protocol induces a higher overhead on failure-free execution.
But the recovery time is lower as a single failure does not involve all the system: only
the faulty has to recover.

Fault-tolerance Configuration: Choosing the best protocol depends on the character-
istics of the application, and of the underlying hardware that are known at deployment
time; the fault-tolerance mechanism is designed such that making a ProActive appli-
cation fault-tolerant is automatic and transparent to the developer; there is no need
to consider fault-tolerance concerns in the source code of the application. The fault-
tolerance settings are actually contained in the nodes: an active object deployed on a
node is configured by the settings contained in this node.

Fault-tolerance is a technical service as defined in Section 6.3. The designer can
specify in the virtual nodes descriptor the needed reliability of the different parts of the
application, and the deployer can choose the adapted mechanism to obtain this reliabil-
ity by configuring the technical service in the deployment descriptor. The deployer can
then select the best mechanism and configuration:
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• the protocol to be used (CIC or PML), or no protocol if software fault-tolerance is
not needed on the used hardware,

• the Time To Checkpoint value (TTC),

• the URLs of the servers.

6.3.3.2 Technical service code example

To illustrate the mechanism of technical services, we consider a master-worker appli-
cation for solving flow-shop problems (see Section 4.4.1). An implementation of this
problem with Grid’BnB has already been presented in Chapter 4. In this previous ver-
sion the fault-tolerance is handled by the B&B framework. This example is a simple
implementation of the flow-shop without the previous presented framework, it aims to
show the application of technical services.

General architecture: The solution tree of the problem is divided by a master in a
set of sub-tasks, these sub-tasks are allocated to a number of sub-managers, which can
also be at the top of a hierarchy of sub-managers. Sub-managers manage sub-task al-
location to the workers and also perform communications between them to synchronize
the best current solution. Sub-managers handle dynamic acquisition of new workers
as well as worker failures by reallocating failed tasks. As a consequence, there is no
need for applying an automatic fault-tolerance mechanism (then to pay an execution-
time overhead) on the workers. On the contrary, the manager and the sub-managers
must be protected against failures by the middleware since there is no failure-handling
at application level for them.

Deployment descriptor: A complete example of a deployment descriptor based on the
P2P infrastructure:

<ProActiveDescriptor>
<componentDe�nition>
<virtualNodesDe�nition>
<virtualNode name="masters" serviceRe�d="ft-master" />
<virtualNode name="workers" />

</virtualNodesDe�nition>
</componentDe�nition>
<deployment>
<mapping>
<map virtualNode="masters">
<vmName value="localJVM" />
<vmName value="p2plookup_sub-masters" />

</map>
<map virtualNode="workers">
<vmName value="p2plookup_workers" />

</map>
</mapping>

</deployment>
<infrastructure>
<processes>
<processDe�nition id="localJVM">
<jvmProcess class="org.objectweb.proactive.core.process.JVMNodeProcess" />

</processDe�nition>
</processes>
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<aquisition>
<P2PService id="p2plookup_sub-masters" nodesAsked="10">
<peer>rmi://registry1:3000</peer>

</P2PService>
<P2PService id="p2plookup_workers" nodesAsked="1000">
<peer>rmi://registry1:3000</peer>

</P2PService>
</aquisition>

</infrastructure>
<technicalServiceDe�nitions>
<service id="ft-master" class="services.FaultTolerance">
<arg name="protocol" value="pml" />
<arg name="server" value="rmi://host/FTServer1" />
<arg name="TTC" value="60" />

</service>
</technicalServiceDe�nitions>

</ProActiveDescriptor>

This descriptor defines two virtual nodes: one for hosting the masters and one for
hosting the workers. Only the master virtual node is configured by a technical service
defining the most adapted fault-tolerance configuration regarding the underlying hard-
ware; here, the protocol used is PML, set with a short TTC value as we are in P2P with
volatile nodes.

Fault-tolerance technical service code: The functional code of the fault-tolerance is
in fact implemented in the ProActive core code for logging messages. Thus the technical
service just sets some global properties for starting the logging of messages by the fault-
tolerance. The full implementation of our fault-tolerance technical service is:

public class FaultToleranceTS implements TechnicalService {
private String SERVER;
private String TTC;
private String PROTOCOL;

public FaultToleranceTS() {
}

public void init (Map argValues) {
this .SERVER = (String) argValues.get("proactive.ft.server.global");
this .TTC = (String) argValues.get("proactive.ft.ttc");
this .PROTOCOL = (String) argValues.get("proactive.ft.protocol");

}

public void apply(Node node) {
node.setProperty("proactive.ft . server . global", this .SERVER);
node.setProperty("proactive.ft . ttc", this .TTC);
node.ssetProperty("proactive. ft .protocol", this .PROTOCOL);

}
}

Experimentation: The proposed technical service mechanism has been implemented
and experiments have been done with the sub-set of the desktop infrastructure, which
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is described in Section 3.4. This infrastructure provides a pool of desktops, which have
heterogeneous configuration and hardware.

Figure 6.6 shows the Flow-Shop application deployed with the technical service for
fault-tolerance on the P2P infrastructure. The instance of the flow-shop problem is 15
jobs / 20 machines. The fault-tolerance protocol used is PML with a TTC of 60 seconds.
We observe that the computation time decreases with the number of CPUs.

Figure 6.6: Experiments with flow-shop and the technical fault-tolerance service

The increase from 50 to 60 CPUs is due to the fact that some tasks of the problem
run on more slower machines than for 50 or 70 CPUs. Benchmarks run on a desktop
Grid and use a different set of machines at each run. It is hard to control expected
machines with the peer-to-peer aspects of our benchmarks.

For more benchmarks on the fault-tolerance itself, we invite you to look up this arti-
cle [BAU 05].

6.3.4 Technical services future work

In this thesis, we propose a way to attach Technical Services to Virtual Nodes, map-
ping non-functional aspects to the containers, dynamically at deployment and execution
time. More investigations are needed to look into the fit of the architecture with respect
to the complexity of Grid platforms, and to the large number of technical services to be
composed and deployed. In the short term, we are planning to explore the combination
of two technical services: fault-tolerance and load-balancing.
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Technical services allow deployers to apply and configure applications non-functional
requirements. However, deployers have to be aware of which technical services appli-
cations need. To solve this lack for connections between developers and deployers, we
propose in the next section a mechanism to fix this issue.

6.4 Virtual node descriptor

In the context of this thesis, we have presented (in the previous section) a mechanism to
dynamically apply non-functional requirements to applications. This mechanism, which
is technical services, extends the ProActive deployment framework. Technical services
are applied and configured within the deployment descriptor, which is separated from
the application. In other words, the developers write the application codes and the
deployers write the deployment descriptors.

Thus, the deployment framework, including technical services mechanism, lacks for
a tool that helps developers to specify their applications requirements for deployers.
In this section, we propose a mechanism to complete the deployment framework with
Virtual Nodes descriptor [CAR 06c] to solve this issue. This mechanism is also designed
to integrate the paradigm of component for Grids [MOR 06].

Problematic: Software engineering defines clear separations between the roles of ac-
tors during the development and usage of a software component. In particular, a de-
signer is expected to specify not only the functional services offered or required by a
component, but also the conditions on the environment that are required for a correct
deployment – so that the deployer can fulfill her task. The designer must therefore have
a way to specify environmental requirements that must be respected by targeted deploy-
ment resources. The deployer, from her knowledge of the target infrastructure, must be
able to specify optimized and adequate adaptations or creations of the resources. Pro-
grammers of applicative components, who should mostly concentrate on the business
logic, may be provided with abstractions for the distribution of the components; deploy-
ment requirements can be specified on these abstractions.

In the context of Grid computing, current platforms are falling short to express these
deployment requirements, especially dynamically fulfillable ones, i.e. requirements that
can be fulfilled in several manners at deployment time. Adding and configuring fault-
tolerance, security, load-balancing, etc. usually implies intensive modification of the
source code.

Thus we propose a mechanism for Grid computing frameworks, for specifying envi-
ronmental requirements that may be optimized by deployers.

These requirements are specified by designers by parameterizing deployment ab-
stractions, and are fulfilled dynamically by the deployers. Practically, we propose a
mechanism for specifying deployment constraints and dynamically applying them on
deployment infrastructures. Deployment constraints are specified on Virtual Nodes,
which are deployment abstractions for the ProActive Grid middleware.

Context component based programming: In addition to the standard object ori-
ented programming paradigm, ProActive also proposes a component-based program-
ming paradigm, by providing an implementation [BAU 03] of the Fractal component
model [BRU 02] geared at Grid computing.

Fractal is a modular and extensible component model, which enforces separation of
concerns, and provides a hierarchical structure of component systems. Because it is a
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simple though extensible model with clear specifications, Fractal has been chosen as
a base for the Grid Component Model, currently under specification in the CoreGrid
European NoE.

In the implementation of the Fractal model with ProActive, components are imple-
mented as active objects, therefore all underlying features of the library are applicable
to components.

The deployment of components is addressed in two ways: with a dedicated and stan-
dardized Architecture Description Language (ADL) [TUT ] for describing Fractal com-
ponents, and with the ProActive deployment framework described in the Section 6.1.

6.4.1 Constrained deployment

6.4.1.1 Rationale

Some components may require specific non-functional services, such as availability, re-
liability, security, real-time, persistence, or fault-tolerance. Some constraints may also
express deployment requirements, for example the expected number of resources (min-
imum, maximum, exact), or a timeout for retrieving these resources. These constraints
can only be expressed by the designers of the components or by the application develop-
ers.

Because the deployment infrastructure is abstracted into virtual nodes, we propose
to express these non-functional requirements as contracts [FRØ 98] in a dedicated de-
scriptor of virtual nodes (Fig. 6.7). This allows a clear separation between the concep-
tual architecture using virtual nodes and the physical infrastructure where nodes exist
or are created; it enforces designer-defined constraints; it maintains a clear separation
of the roles: the designer/developer specifies deployment constraints, and the deployer,
considering the available physical infrastructure, enforces the requirements when writ-
ing the mapping of virtual nodes in the deployment descriptor. Moreover, we propose to
leverage the definition of deployment constraints with the introduction of dynamically
fulfillable constraints.

6.4.1.2 Constraints

Expressing deployment constraints at the level of virtual nodes enforces a strict sepa-
ration of non-functional requirements from the code. By using a dedicated descriptor
of virtual nodes, the constraints may easily be modified or adapted by the designer to
express new requirements. Virtual nodes descriptors also allow a strict separation be-
tween the non-functional requirements and the description of the application. Because
virtual nodes are abstractions that may be used in component ADLs or in application
codes, constrained deployment through virtual nodes descriptors is applicable for both
component-based and object-based applications.

We distinguish statically fulfilled requirements, which may not usually change in
selected nodes (for instance the operating system), from dynamically fulfilled require-
ments, which may be applied at runtime by configuring the nodes (for instance the need
for fault-tolerance or load-balancing). There are many ways to specify static constraints,
as proposed in OLAN [BEL 97], in Corba Software Descriptor files [Obj 02], or more
specifically in the context of Grid computing, as recently proposed by the Global Grid
Forum in the Job Submission Description Language (JSDL) [ANJ 05]. The JSDL could
be extended for defining constraints that may be dynamically fulfilled.
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Figure 6.7: Deployment roles and artifacts

6.4.1.3 Dynamically fulfilled constraints

The deployer may decide to use an acquisition-based deployment, which means retriev-
ing existing nodes from a given infrastructure (for instance a P2P infrastructure). In
that case, available nodes exhibit static configurations as chosen by the administrator
when deploying the P2P infrastructure. The deployer or deployment tool filters avail-
able nodes based on these requirements and should only propose matching nodes. In
general, the deployment of a given application currently takes place on pre-configured
infrastructures.

This selection process is unfortunately restrictive, as when using an existing node
infrastructure, one may not find any matching resource. Deployment on this existing
infrastructure is therefore impossible in such a case.

Moreover, some requirements that are usually considered as static, may actually
be dynamically fulfilled. An example being the operating system: for instance, when
deploying on the french Grid’5000 infrastructure, the operating system can be installed
at deployment time [CAP 05].

Lastly, different strategies may be applied to fulfill non-functional requirements and
the most adequate strategies may depend on the characteristics of the infrastructure at
runtime, for example the topology.

The concept of technical services, which is described in Section 6.3, can be used to
allow such dynamic adaptation.

6.4.1.4 Problem with composition of components

If two separate and packaged components define incompatible constraints on homony-
mous virtual nodes, they cannot be deployed on the same target nodes. Fortunately, this
problem can be solved by creating a composite component containing these components
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and performing renaming of the virtual nodes: deployment can then be performed on
a disjoint set of nodes, which eliminates the incompatibility issue. Figure 6.8 provides
an illustration of this method: component 1 and component 2 are packaged components
that both define constraints on a virtual node named VN1, but these constraints are
incompatible. By wrapping these components into the composite component named
component 3, it is possible to remap the deployment of components 1 and 2 onto the
separate virtual nodes VNA and VNB. The remapping takes place in the ADL of the
composite component; we provide an extension of the ADL for this purpose.

Packaged composite component 3

Virtual Nodes descriptor 3

ADL 3
Comp 1.VN1 --> VNA
Comp 2.VN1 --> VNB

Packaged component 1

ADL 1
VN1

Virtual Nodes descriptor 1

Packaged component2

ADL 2
VN1

Virtual Nodes descriptor 2

Figure 6.8: Composition of components with renaming of virtual nodes

6.4.2 Virtual Nodes Descriptors

The description of virtual nodes is expressed in a dedicated virtual nodes descriptor, in
XML format :

<virtual-nodes>
<virtual-node name="VN1">
<technical-service type="services.Service1"/>
<processor architecture="x86"/>
<os name="linux" release="2.6.15"/>

</virtual-node>
</virtual-nodes>

Non-functional contracts are here expressed in a simple way. The technical-service tag
specifies the technical service (more precisely the type, class or idealy interface, defining
the technical service), which has to be applied on the virtual node VN1 at deployment
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time. Regarding static constraints, we are also considering adopting the JSDL naming
conventions for defining static constraints on virtual nodes.

The deployer in charge of writing the deployment descriptor is aware of the re-
quirements by looking at the virtual nodes descriptor, and must ensure the infrastruc-
ture matches the requirements. There is no contract management module, such as
in [LOQ 04], nor deployment planner such as in [LAC 05]. Indeed, contracts are verified
when retrieving nodes from the physical infrastructure, resulting in runtime errors if
contracts are not respected. This ensures a simple framework in terms of specification
and verification, eludes resource planning issues, and could still be plugged to a resource
allocator framework such as Globus’ GARA [FOS 00].

6.4.3 Deployment process: summary

The specification of non-functional constraints as well as the dynamic fulfilling of the
constraints expressed as technical services imply a new deployment process, which is
summed up in a standard case in Fig. 6.7. In this figure, roles and artifacts are explicitly
expressed :

• the designer and developer provide the code and the description of the component
system (ADL), as well as the non-functional constraints in a virtual node descrip-
tor;

• the integrator gathers compiled sources, ADL and virtual nodes descriptor into a
deliverable package;

• the deployer writes or adapts a deployment descriptor so that the deployment of
the component system verifies the virtual nodes descriptor with respect to the
available infrastructure. Technical services are applied at runtime if needed.

Two other scenarios are possible:

• a designer wants to use a given set of Grid resources, and the interface to these re-
sources is a deployment descriptor provided by the system administrator/provider
of the resources;

• a deployer wants to use available packaged components, and deploy them on a
given infrastructure for which a deployment descriptor is available.

In all scenarios, the specification of non-functional constraints in the virtual nodes
descriptor ensures that the application requirements and the physical infrastructure
are compatible, and this compatibility is possibly attained by dynamically updating the
configuration of the physical resources.

6.4.4 Use case: deployment on a P2P infrastructure with fault-tolerance re-
quirements

This section shows the concept of dynamically fulfilled deployment constraints through
technical services: it presents a use case involving the deployment of a component sys-
tem with some fault-tolerance requirements on a P2P infrastructure; it demonstrates
how the proposed approach helps resolving deployment and QoS requirements in the
most suitable way.



Section 6.4. Virtual node descriptor 123

6.4.4.1 Virtual nodes descriptor example

To illustrate our mechanism of constrained deployment, we consider the same master-
worker application for solving flow-shop problems as described in Section 6.3.3.2. As
we already explained, there is no need for applying an automatic fault-tolerance mech-
anism (then to pay an execution-time overhead) on the workers. On the contrary, the
manager and the sub-managers must be protected against failures by the middleware
since there is no failure-handling at application level for them.

In this case, the designer of the application specifies in the virtual nodes descriptor
that a fault-tolerance technical service must be applied on the virtual node that hosts
manager components, while there is no such constraint on a worker component:

<virtual-nodes>
<virtual-node name="managers">

<technical-service type="services.FaultTolerance"/>
<processor architecture="x86"/>

</virtual-node>
<virtual-nodes>

When deploying the application, the deployer can choose the most adapted fault-
tolerance mechanism depending on the environment by configuring the technical ser-
vice. This technical service must fit, i.e. extends or implements, the type specified in
the virtual node descriptor. For instance, suppose that the application is deployed on a
desktop Grid provided by the P2P infrastructure. Such resources being strongly prone
to failure, the chosen fault-tolerance mechanism must deal with very frequent failures,
and thus provide a reactive and fast recovery, even at the expense of a high overhead
on execution time. Using a lighter but weaker mechanism in this case could lead the
system to continuously recover. Finally, the deployer chooses the PML approach, with a
small TTC value (60 sec) as in the following deployment descriptor:

<ProActiveDescriptor>
<componentDe�nition>
<virtualNodesDe�nition>
<virtualNode name="managers" property="multiple" serviceRe�d="ft-master"/>
<virtualNode name="workers" property="multiple"/>

</virtualNodesDe�nition>
</componentDe�nition>
...
<aquisition>
<aquisitionDe�nition id="p2pservice">
<P2PService nodesAsked="1000">
<peerSet>
<peer>rmi://peer.registry:3000</peer>

</peerSet>
</P2PService>

</acquisitionDe�nition>
...
<technicalServiceDe�nitions>
<service id="ft-master" class="services.FaultTolerance">
<arg name="proto" value="pml"/>
<arg name="server" value="rmi://host/FTServer"/>
<arg name="TTC" value="60"/>

</service>
</technicalServiceDe�nitions>
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</ProActiveDescriptor>

6.4.5 Virtual nodes descriptors analysis

In the previous example, the concept of technical service has allowed to apply the neces-
sary and sufficient fault-tolerance mechanism when deploying the application:

• necessary thanks to the virtual nodes descriptor; the designer has specified the
minimum fault-tolerance requirements for its application. Without this specifi-
cation, the deployer could have unnecessarily applied fault-tolerance on all the
application;

• sufficient thanks to the possibility to choose at deployment time how the constraint
specified by the designer should be fulfilled to take into account the characteristics
of the available resources. If the fault-tolerance aspect had been fully specified
by the designer at development time, the chosen fault-tolerance mechanism could
have been too weak to be able to deploy on a desktop Grid.

The previous example also illustrates the pertinency of the virtual nodes descrip-
tor mechanism in a concrete use-case: deploying an component-based application with
fault-tolerance on an heterogeneous Grid provided by the P2P infrastructure proposed
in this thesis.

This mechanism aims at specifying environmental requirements that may be defined
by developers, and specified by deployers by parameterizing deployment abstractions.
This mechanism is integrated in the ProActive middleware, and allows flexible compo-
nent deployments thanks to easily configurable technical services. Application design-
ers can specify minimum deployment requirements, and deployers are able to apply the
optimal configuration that fulfills those requirements.

6.5 Balancing active objects on the peer-to-peer infrastructure

One of the main features of a distributed system is the ability to redistribute tasks
among its processors. This requires a redistribution policy to gain in productivity by
dispatching the tasks in such a way that the resources are used efficiently, i.e. mini-
mizing the idle time average of the processors and improving applications performance.
This technique is know as load-balancing. Moreover, when the redistribution decisions
are taken at runtime, it is called dynamic load-balancing.

ProActive proposes a dynamic load-balancing mechanism [BUS 05] based on the al-
gorithm of Shivaratri and al. [SHI 92]. In addition of adapting this algorithm to ac-
tive objects, the load-balancing mechanism is designed to take advantage of dynamic
resources acquisition provided the P2P infrastructure proposed in this thesis (see the
Chapter 3).

This section first explains the fundamentals of our active objects load-balancing al-
gorithm, this work is a collaboration with Javier Bustos from OASIS project.Then, we
show implementation issues and benchmarks of our algorithm with a Jacobi parallel
application.
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6.5.1 Active object balancing algorithm

Dynamic load-balancing on distributed systems is a well studied issue. Most of the
available algorithms [SHI 92] focus on fully dedicated processors with homogeneous net-
works, using a threshold monitoring strategy and reacting to load imbalances. On P2P
networks, heterogeneity and resource sharing (like processor time) are key aspects and
most of these algorithms become inapplicable, producing poor balance decisions to low
capacity processors and compensating with extra migrations.

Moreover, due to the fact that processors connected to a P2P network share their
resources not only with the network but also with the machine owner, new constraints
like reaction time against overloading and bandwidth usage become relevant.

In this section, the relation between active object service and processing time is pre-
sented. Then, the adaptation of the Shivaratri and al. load-balancing algorithm [SHI 92]
for P2P active object networks is presented.

6.5.1.1 Active objects and processing time

When an active object waits idly (without processing), it can be on a wait-for-request
or a wait-by-necessity state (see Figure 6.9). While the former represents an under
utilization of the active object, the latter means some of its requests are not served as
quickly as they should. The longer waiting time is reflected on a longer application
execution time, and thus a lesser application performance. Therefore, we focus on a
reduction in the wait-by-necessity time delay.
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Figure 6.9: Different behaviors for active objects request (Q) and reply (P): (a) B starts in wait-
for-request (WfR) and A made a wait-by-necessity (WfN). (b) Bad utilization of the active object
pattern: asynchronous calls become almost synchronous. (c) C has a long waiting time because B
delayed the answer

Even though the balance algorithms will speed up applications like in Figure 6.9 (b),
we will not consider this kind of behavior, because the time spent by message services
is so long that the usage of futures is pointless. In this sort of application design, asyn-
chronism provided by futures will unavoidably become synchronous. This is the same
behavior experienced when using an active object as a central server. Migrating the
active object to a faster machine will reduce the application response time but will not
correct the application design problem.

Therefore, we focus on the behavior presented by Figure 6.9 (c), where the active
object on C is delayed because the active object on B has not enough free processor time
to serve its request. Migrating the active object from B to a machine with available
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processor resources speeds up the global parallel application. This happens, because C
wait-by-necessity time will shorten, and B will decrease its load.

6.5.1.2 Active object balance algorithm on a central server approach

Suppose a function called load(A,t) exists, which gives the usage percentage of processor
A since t units of time. Defining two threshold: OT and UT (OT > UT), we say that a
processor A is overloaded (resp. underloaded) if load(A,t) > OT (resp. load(A,t) < UT).

The load balancing algorithm uses a central server to store system information, pro-
cessors can register, unregister and query it for balancing. The algorithm is as follows:

Every t units of time

1. if a processor A is underloaded, it registers on the central server,

2. if a processor A was underloaded in t-1 and now it has left this state, then it un-
registers from the central server,

3. if a processor A is overloaded, it asks the central server for an underloaded pro-
cessor, the server randomly choose a candidate from its registers and gives its
reference to the overloaded processor.

4. The overloaded processor A migrates an active object to the underloaded one.

This simple algorithm satisfies the requirements of minimizing the reaction time
against overloadings and, as explained in Section 6.5.1.1, speeds up the application
performance. However, it works only for homogeneous networks.

In order to adapt this algorithm to heterogeneous computers, we introduce a function
called rank(A), which gives the processing speed of A. Note that this function generates
a total order relation among processors.

The function rank provides a mechanism to avoid processors with low capacity, con-
centrating the parallel application on the higher capacity processors. It is also possible
to provide the server with rank(A) at registration time, allowing the server to search
for a candidate with similar or higher rank. This would produce the same mechanism,
with the drawback of adding the search time to reaction time against overloading. In
general, all search mechanisms of the best unloaded candidate in the server will add a
delay into server response, and consequently in reaction time.

Before implementing the algorithm, we studied our network and selected a proces-
sor B1 as reference in terms of processing capacities. Then, we modified the previous
algorithm to:

Every t units of time

1. If a processor A is overloaded, it asks the central server for an underloaded pro-
cessor, the server randomly chooses a candidate from its registers and gives the
reference to the overloaded processor.

2. If A is not overloaded, it checks if load(A,T) < UT*rank(A)/rank(B), if true then it
registers on the central server. Otherwise it unregisters from the central server.

3. Overloaded processor A migrates an active object to the underloaded one.

1Choosing the correct processor B requires further research, but for now the median has proved reason-
able approach.
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6.5.1.3 Active object balancing using P2P infrastructure

Looking for a better underloaded processor selection, we adapted the previous algo-
rithm, using a subset of peer acquaintances from the P2P infrastructure (fully described
in Chapter 3) to coordinate the balance.

Suppose the number of computers on the P2P network is N , large enough to suppose
them independents on their load. If p is the probability of having a computer on an
underloaded state, and the acquaintances subset size is n << N , then the probability of
having at least k responses is

n∑
i=k

(n
k)pi(1− p)n−i

Therefore, having an estimation of p, a good selection of the parameter n permits a
reduction on the bandwidth used by the algorithm with a minimal addition on reaction
time. For instance, using the pairs (p = 0.8,n = 3) or (p = 0.6,n = 6), one has a response
probability greater than 0.99.

The algorithm for P2P networks is:
Every t units of time

1. If a processor A is overloaded, it sends a balance request and the value of rank(A)
to a subset n of its acquaintances (using group communication).

2. When a process B receives a balance request, it checks if load(B,T) < UT and
rank(B) ≥ rank(A)-ε (where ε > 0 is to avoid discarding similar, but unequal pro-
cessors), if true, then B sends a response to A.

3. When A receives the first response (from B), it migrates an active object to B.
Further responses for the same balance request can be discarded.

6.5.1.4 Migration

A main load-balancing algorithm problem is the migration time, defined as the time
interval since the processor requests an object migration, until the objects arrives at the
new processor 2. Migration time is undesirable because the active object is halted while
migrating. Therefore, minimizing this time is an important aspect on load-balancing.

While several schemes try minimizing the migration time using distributed mem-
ory [FRI 98] (not yet implemented in Java), or migrating idle objects [GRI 97] (almost
inexistent on intensive-communicated parallel applications), we exploit our P2P archi-
tecture to reduce the migration time. Using a group call, the first reply will come from
the nearest acquaintance, and thus the active object will spend the minimum time trav-
eling to the closest unloaded processor known by the peer.

The migration time problem is not the only source of difficulty. There is a second one:
the ping pong effect. This appears when active objects migrate forwards and backwards
between processors. This trouble is conceptually avoided by our implementation by
choosing the migrating active object as the one with shortest service queue. During the
migration phase, the active object pauses its activity and stops handling requests. For
a recently migrated active object, all new requests are waiting in the queue, and will
only begin to be treated after the migration has finished. Therefore, a freshly migrated

2In ProActive, an object abandons the original processor upon confirmation of arrival at the new proces-
sor.
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object generally has a longer queue than similar objects on the new processor, thus a
low priority for moving.

By experimentation (see the next Section), we have observed that these migration
problems are not present when using this approach.

6.5.2 Experiments

Algorithms were deployed on a set of 25 of INRIA lab desktop computers, having 10
Pentium III 0.5 - 1.0 Ghz, 9 Pentium IV 3.4 GHz and 6 Pentium XEON 2.0 GHz, all of
them using Linux as operating system and connected by a 100 Mbps Ethernet switched
network. With this group of machines we used the P2P infrastructure to share JVMs.
Functions load() (resp. rank()) of section 6.5.1.2 and 6.5.1.3 were implemented with
information available on /proc/stat (resp. /proc/cpuinfo). Load-balancing algorithms
were developed using ProActive on Java 2 Platform (Standard Edition) version 1.4.2.

In our experience, using our knowledge of the lab networks, we experimentally de-
fined the algorithm parameters as OT = 0.8 (to avoid swapping on migration time), and
UT = 0.3; in order to have, in normal conditions, 80% of desktop computers on under-
loaded state.

Since the cpu speed (in MHz) is a constant property of each processor and it repre-
sents its processing capacity, and after a brief analysis of them on our desktop comput-
ers, we define the rank function as: rank(P ) = log10 speed(P ), with ε = 0.5.

When we implemented the algorithm, a new constraint came to light: all load status
are checked each t units of time (called update time). If this update time is less than
migration time, extra migrations which affects the application performance could be
produced. After a brief analysis of migration time, and to avoid network implosion, we
assume a variable t̃ which follows an uniform distribution and experimentally define
the update time as:

tupdate = 5 + 30 t̃(1− load)[sec], (load ∈ [0, 1])

This formula has a constant component (migration time) and a dynamic component
which decrease the update time while the load increase, minimizing the overload reac-
tion time.

We tested the impact of our load-balancing algorithm over a concrete application: the
Jacobi matrix calculus. This algorithm performs an iterative computation on a square
matrix of real numbers. On each iteration, the value of each point is computed using
its value and the value of its matrix neighbors in their last iteration. We divided a
3600x3600 matrix in 36 workers all equivalents, and each worker communicates with
its direct matrix neighbors.

We randomly distributed Jacobi workers among 16 (of 25) machines, measuring the
execution time of 1000 sequential calculus of Jacobi matrices. First, we used the central
server algorithm defined in Section 6.5.1.2 (having a cpu clock of 3GHz as reference) and
then using the P2P version defined in Section 6.5.1.3 (having n = 3). Measured values
of these experiences can be found in Figure 6.10.

Looking for lower bounds in Jacobi execution time, we measured the mean time of
Jacobi calculus for 2, 3 and 4 workers by machine, using the computers with higher
rank and without load-balancing. Horizontal lines in Figure 6.10 are the values of this
experience. Applying the information from the non-balanced experience, we tested the
number of actives objects as a load index, defining UT=3,OT=4 to have around 3 ac-
tive objects per machine. Measured values for this experience are represented by the x
symbol in Figure 6.10.
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Figure 6.10: Impact of load-balancing algorithms over Jacobi calculus

While using the information from the non-balanced experience seemed to be a good
idea, the heterogeneity of the P2P network produced the worse scenario: large num-
ber of migrations and bad migration decisions, therefore poor performance on Jacobi
calculus. Using CPU usage as load index had better performance than the previous
case: while the central server oriented algorithm produced low mean times for low rate
of migrations (an initial distribution near to the optimal), the P2P oriented algorithm
presents a better performance while the number of migrations increases. Moreover,
considering the addition of migration time on Jacobi calculus performance, the P2P bal-
ance algorithm produces the best migration decisions only using a minimal subset of
its neighbors. The use of this minimal subset produces also a minimization in number
of messages for balance coordination. This fact and the neighbor approach of our P2P
network provide automatically scalability conditions for large networks.

6.5.3 Load-balancing analysis

We have introduced a P2P dynamic load-balancing for active objects, focusing on in-
tensively communicating parallel applications. We started introducing the relation be-
tween active objects and CPU load. Then, an order relation to improve the balance was
defined. The case study showed that, if the number of migrations increase (this can
occurs due to a non-optimal distribution or due to the dynamic behavior of the P2P net-
work), the performance (on reaction time and migration decisions) increases for the P2P
algorithm and decreases for the central server approach. Also, the load-balancing algo-
rithm exploits the P2P architecture to provide scalability conditions for large networks.
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As we have shown with experiments this load-balancing is implemented and it can
be used as technical service (as presented before in this chapter).

6.6 Conclusion

In this chapter, we have described the deployment framework of the ProActive Grid mid-
dleware. This deployment framework is based on the concept of virtual nodes, which is
an abstraction of the physical infrastructure for the application point of view.

Virtual nodes do not allow easier resource localization on Grids, therefore we have
improved the deployment with a mechanism to localize nodes on Grids. This new mech-
anism is used by the implementation of our branch-and-bound framework (Grid’BnB),
see Section 4.3. The node localization permits to organize workers in groups, where
workers are located on the same cluster, in order to reduce the cost of inter-worker com-
munications.

The second contribution presented in this chapter is the concept of technical services.
Technical services are non-functional requirements that may be dynamically fulfilled at
runtime by adapting the configuration of selected resources. We have implemented a
technical service for fault-tolerance and a second for load-balancing.

The load-balancing technical service is specially adapted to take advantage of re-
sources acquisition provided the P2P infrastructure proposed in this thesis (see the
Chapter 3).

The last contribution of this chapter is the virtual nodes descriptor. Application
developers can specify minimum deployment requirements, such as technical services,
with the virtual nodes descriptor, and deployers are able to apply the optimal configura-
tion that fulfills those requirements.

Finally, the ProActive deployment framework and virtual nodes descriptors are used
in the Grid Component Model (GCM) proposal from the European Coregrid network, a
Europen academic Network of Excellence (NoE). A draft of the standard [GRI b] is in
preparation by the GridComp project, which aims to define and implement the GCM.
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Ongoing Work and Perspectives

This chapter introduces ongoing and perspective work based on this thesis contribu-
tions. We are currently working on a job scheduler that allows INRIA Sophia people
to freely use the INRIA Sophia P2P Desktop Grid. In addition, we are working to im-
prove the resource discovery mechanisms of the P2P infrastructure. For the moment,
we are exploring two different ways to achieve this goal: first, by modifying the message
protocols; second, by a concept of tagging peers.

The branch-and-bound framework is also subject to ongoing work, especially with
the improvement of our flow-shop implementation. Furthermore, we plan to do larger-
scale experiments by including clusters located in Netherlands and in Japan.

Finally, we introduce our current work on Grid application deployments. This work
aims at providing a contract between developers, infrastructure managers, and applica-
tion users.

The chapter is organized as follow. First, we introduce all current peer-to-peer re-
lated work. Second, we present branch-and-bound ongoing and perspective work. Last,
we present a contract mechanism for Grid deployment.

7.1 Peer-to-Peer

7.1.1 Job scheduler for the peer-to-peer infrastructure

With the n-queens computation success, the usability and the viability of the INRIA
Sophia P2P Desktop Grid has been proved. This experiment especially shows that the
infrastructure is well suited to a mono-application usage, which requires all available
resources for a long-running computation. We now would like to open the infrastructure
to all INRIA Sophia researchers.

After several discussions with our colleagues, we pointed out that the infrastructure
may involve some people of the lab for running very long network simulations, or image
rendering, or even simulating the human heart. However, all these scenarios require
a small utilization of the infrastructure, in terms of number of used resources. Also,
we noticed that all these cases may be described by a set of independents or dependent
tasks. In other words, we can specify several kinds of job application: single task, para-
metric sweep tasks, and work-flow tasks.

131
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Hence, we decided to start the development of a job scheduler for the P2P infras-
tructure. This development is in collaboration with Johann Fradj, Jonathan Martin,
and Jean-Luc Scheefer. In addition, we decided to provide a graphical tool to help user
submit and manage their jobs, Figure 7.1 shows a screen-shot of the current GUI.

Figure 7.1: Screen-shot of the job scheduler

Because, we plan to have several users of the infrastructure, we started to develop
another graphical tool to manage the infrastructure, this tool is for infrastructure ad-
ministrators. Figure 7.2 shows a screen-shot of the current infrastructure manager
GUI.

7.1.2 Peer-to-Peer resource localization

The P2P infrastructure proposed in this thesis, see Chapter 3, considers all shared re-
sources as similar. From the infrastructure point of view, resources can be free or busy,
it is the only one difference between them. In Chapter 4, we presented Grid’BnB, a
framework for Grids, which has for main particularity to organize workers in groups
with respect to their Grid localization. A mechanism has been presented, in the previ-
ous chapter, to solve this issue. This mechanism of Grid node localization is based on a
tagging mechanism. Unfortunately, this mechanism is not optimal with the P2P infras-
tructure, even if we used it for large-scale experiments (see Chapter 5). Furthermore,
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Figure 7.2: Screen-shot of the infrastructure manager

the first users of the scheduler reported the need of requesting particular resources,
which have a specific system library, enough memory, etc.

In addition, we presented in this thesis some work using the transparent fault-
tolerance provided by ProActive. The fault-tolerance mechanism proposes two config-
urable protocols, these protocols are applied in regards of the infrastructure on which
the application is deployed. In other words, it is not the same fault-tolerance protocol
for a desktop machine and for a cluster one.

All these advanced uses of the infrastructure point out the need of solutions for iden-
tifying resources on Grids. In this section, we introduce two different strategies that
aim to solve the localization of specific computational resource on Grids managed by the
P2P infrastructure.

First, we introduce the node family mechanism that is a simple way to identify re-
sources especially for fault-tolerance. We then describe a new message protocol for the
infrastructure that allows complex resource requests.

7.1.2.1 Node family

We are currently working with Christian Delbé from OASIS research group on the con-
cept of node family. In the previous chapter, we pointed out the lack of resource localiza-
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tion in the P2P infrastructure. Especially, for the ProActive fault-tolerance configura-
tion, which has to be differently configured depending of desktop machines or clusters.

This work aims to help applications to have a finer use of resources acquired from
the P2P infrastructure. The proposed mechanism has for main particularity to avoid
modifying the current message protocol of the infrastructure.

In this work, we assume that an administrator installs and manages the deployed
P2P infrastructure. For instance, the INRIA Sophia P2P Desktop Grid has three peo-
ple who are in charge of maintaining it up. The key idea of the node family concept is
that the administrator groups peers in families. A family gathers peers with the same
set of characteristics. Characteristics may be whatever the administrator thinks that is
important and usable, such as creating a family with Windows OS peers or with 1 GB
RAM or even both.

When a new peer is installed by the administrator, she sets the family names in
which the future peer would be member. The peer has now a table with its family
names. The request messages have a new parameter: a list of family names. Hence,
P2P infrastructure protocols are still the same, except that protocols now match the list
of requested families with the local table before returning free nodes. In addition, when
nodes are returned to applications, they can check the family membership of nodes.

The list of available families with their description must be accessible by the infras-
tructure users. Thus, users are aware of the resource selection that they may be able
to do in their applications. For instance, users may choose to dynamically apply fault-
tolerance to acquired nodes. Users know that there are two families: desktop, which
means the node runs on a desktop; and cluster, which means the node runs on a cluster.
In regards of these families, users may choose the most adapted fault-tolerance protocols
for the acquired machines.

7.1.2.2 Resource discovery for unstructured peer-to-peer

With Fabrice Huet and Imen Filali of the OASIS research group, we are currently work-
ing on a new message protocol for the P2P infrastructure [FIL 07]. Our goal is to design
a new unstructured P2P resource discovery protocol in a distributed Grid environment
in order to enhance scalability, robustness, and efficiency.

The P2P infrastructure presented in this thesis relies on an unstructured P2P model
where connection between peers are arbitrarily established. Such model makes resource
discovery more challenging because of a lack of global routing guaranties offered by the
overlay.

The resource discovery mechanism actually adopted in this infrastructure is limited
to asking for free computational nodes without any explicit description of application
requirements. In addition, it relies on Breadth-First Search algorithm (BFS): by using
a flooding approach, a peer needing computational resources broadcasts to all its neigh-
bors a message containing the number of asked nodes. An available peer receiving the
query sends its reference to the requester. Otherwise, a busy peer forwards the query
according to the flooding mechanism. The procedure is executed until the number of the
requested nodes is satisfied or TTL (Time to Live) of the message reaches zero. However,
the flooding-based query algorithm generates a large amount of traffic.
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Aiming to enhance the actual resource discovery deployed in the the INRIA Sophia
P2P Desktop Gird, we present in this ongoing work a new peer-to-peer resource discov-
ery mechanism in a distributed Grid environments. Reducing network traffic, message
duplication, and search time are the main challenges of this work. Our objective is
then to come up with a new sophisticated distributed protocol for resource discovery
and reservation in peer-to-peer Grid environments.

The proposal of this work is called Resource Discovery Protocol (RDP). In RDP, we as-
sume that each peer in the network has to announce periodically its available resources
so that other nodes in the network will be aware of which peer can better fulfill their
future requirements. A resource can have several formats such CPU, disk storage, and
a block of a specified information. We design RDP in such a way to reduce the control
messages exchanged in the network by introducing the use of cache systems in the peers
to store an up-to-date view of the location of the available resource in the network. For
this end we define four messages and their formats which are distributively exchanged
between peers either to offer resources (Grant message), to ask for resources (Request
message), to reserve resources (OK request), or to confirm a reservation (OK reply).

One of the main contributions of this work is the design and implementation of a
flexible simulation framework for resource discovery and reservation protocols used to
simulate both previous approaches, namely RDP and the flooding technique [FIL 07].
With this simulation framework, we show that using the RDP scheme can achieve an
important success rate. Compared with Flooding, we demonstrate that RDP can reduce
the traffic load on the peers by limiting the number of received messages and duplicated
messages. We have also studied the impact of some RDP parameters on the success rate
value such as message distribution parameters, message cache lifetime.

There are several issues that still need to be investigated and they are left for a
future work. Because of the important number of parameters on which depend this
proposal, running other simulations with other topologies and more different scenarios
is very important in order to investigate RDP behavior under more different conditions.

Another interesting research area is the investigation of the performance of RDP,
and especially the cache system in a dynamic network where the arrival and the depar-
ture of peers is frequent.

Another potential area of future work is the management of more complex queries
where peers can ask for many resources such as CPU, memory, storage space. Therefore,
the design of flexible formalism for resource description is planned.

7.2 Branch-and-Bound

In this section, we present some perspective work around our branch-and-bound frame-
work and the flow-shop problem.

With Laurent Baduel from the Tokyo Institute of Technology, we recently started a
collaboration that aims to run large-scale experiments with Grid’BnB. For the moment,
we plan to improve our flow-shop implementation with a better objective function, such
as the lower bound technique proposed by Lageweg [LAG 78].

Likewise, we want to run larger scale experiments on a worldwide Grid, by mixing



136 Chapter 7. Ongoing Work and Perspectives

Grid’5000 (France), DAS (Netherlands), and clusters located in Japan. For these experi-
ments, we have first to improve the forwarder mechanism that allows us to pass through
firewalls, and then to test the B&B framework to fix eventual bottleneck issues. We aim
to dynamically build this Grid with the P2P infrastructure. Furthermore, we would also
include in the Grid desktop machines of the INRIA lab.

7.3 Deployment contracts in Grids

In this thesis, we introduced the concept of technical services (see the Section 6.3), which
are non-functional requirements of the application that are configured and applied at
deployment time. In addition to technical services, we presented the virtual nodes de-
scriptor (see the Section 6.4), which allows programmers to describe their application
requirements.

In this section, we introduce our current work with Mario Leyton of the OASIS re-
search group, this work aim at extending technical services and virtual nodes descriptor
to allow contract based deployment [BAU 07].

7.3.1 Design goals

Traditionally the programming and execution of a distributed application has been han-
dled by a single individual. The same individual programs the application, configures
the resources, and performs the execution of the application on the resources. Nev-
ertheless, the increasing sophistication and complexity of distributed applications and
resource infrastructures has led to the specialization of expert roles.

On one side we find the developers of distributed applications, and on the other
side the infrastructure managers who maintain resources such as Desktop machines,
Servers, Cluster and Grids. Between both of these expert roles we can identify the users
who take the applications and execute them on a distributed infrastructure to solve
their needs.

The separation of these roles raises the issue of how programmers and infrastruc-
ture experts relate to solve the needs of the users. The complexity of this issue is em-
phasized when considering that the programmers and infrastructure managers are un-
acquainted. That is to say, a user has to deploy and execute an unfamiliar application
on unfamiliar resources without knowing the requirements of either.

In this work we address the issue of reaching contractual agreement between dis-
tributed applications and resource infrastructures during deployment. We propose the
deployment time as the key moment to reach an agreement between the infrastructure
and the application. Using the contracts, users are able to perform the deployment and
execution of an unfamiliar application on unfamiliar resources effortlessly.

7.3.2 Contracts and agreements

The three roles that we have identified: developers, infrastructure managers, and users
are related with the applications, descriptors, and deployment/execution respectively.
The developer writes the application, the infrastructure manager writes the deploy-
ment descriptor, and the user performs the deployment and execution of the application
on the infrastructure using the deployment descriptor.
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To begin with, the application and descriptor must agree on the name of the virtual-
node. Nevertheless, the virtual-node name is not the only agreement problem that the
application and descriptor have. More importantly, the application and descriptor must
agree on the required and provided technical services such as: fault-tolerance, load-
balancing, etc.

Modifying the application or the descriptor can be a painfull task, specially if we
consider that the user may not be the author of either. To complicate things further,
the application source may not even be available for inspecting the requirements and
performing modifications. Figure 7.3 illustrates the issue. The user is not aware of the
application or descriptor requirements.

Application
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Figure 7.3: Contract deployment roles and artifacts

In the rest of this section we analyze different scenarios where the roles of develop-
ers, users, and infrastructure managers are combined or separated into different people,
and explain different approaches that are able to solve these scenarios.

7.3.2.1 Application virtual node descriptor

Virtual node descriptor is a mechanism for specifying the environmental requirements
of the applications, fully described in the previous chapter.

Using virtual node descriptors, the user does not have to be aware of the application
design and implementation. By simple inspection of the virtual node descriptor, the user
can know the requirements of the application.
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Table 7.1: Types

Type Name | Provides Value | Requires Value | Set constraints | Priority
Application App Desc Desc App
Descriptor Desc App App Desc

Application-Priority App,Desc Desc App,Desc App,Desc
Descriptor-Priority Desc,App App Desc,App Desc,App

Environment Env Desc,App Desc,App Env

By default there is no contract management module, such as in [LOQ 04], nor de-
ployment planner such as in [LAC 05]. Indeed, virtual node descriptors are verified
when retrieving nodes from the physical infrastructure, resulting in runtime errors if
the requirements are not satisfied. This ensures a simple framework in terms of speci-
fication and verification, eludes resource planning issues, and could still be plugged in a
resource allocator framework such as Globus’s GARA [FOS 00].

Nevertheless, developers do not know on which infrastructure the applications will
be deployed, and the infrastructure may not support some specific requirement of the
application. Therefore, in Section 7.3.3 we propose to describe the infrastructure with a
mechanism based on coupling contracts, which is described in the next section.

7.3.2.2 Coupling contracts

Coupling Contracts proposes to capture the properties of how information agreement
takes place between parties, specifically between applications and descriptors [BUS 06].
To achieve this, each party provides an interface holding a set of typed clauses. The
clauses specify what information is required and provided by each party, and the type
specifies how an agreement on this information is reached. If the interfaces are com-
patible, the coupling of the interfaces yields a contract with the agreed values for the
clauses.

7.3.2.3 Concepts: contracts, interfaces, and clauses

Typed Clauses correspond to the information that both parties must agree on. A
clause is defined by a type, a name and a value. The clauses are typed with one
of the alternatives shown in Table 7.1. As an example, the Application type speci-
fies that the value of the clause can only be set by the application. The descriptor
specifies a value as required, forcing the application to provide a value. Another
example corresponds to the Descriptor-Priority type which specifies that a default
value can be provided by the application, and that the value can be overridden
by the descriptor. Additionally, parties can enforce constraints on the value of the
clauses such as maximal and minimal value, choices, etc. The default constraint
corresponds to non-emptiness.

Interfaces represent a grouping of clauses that are exposed by each party. An interface
is defined by a name and a set of clauses.

Coupling Contracts are the results of coupling two interface. The contract holds the
clauses and their values. The values of the clauses are resolved using the specific
type for each clause. If there is a conflict of types, or the value does not satisfy the
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constraints, then the contract is invalid and the coupling is not allowed. When a
contract is valid, then both parties can query the contract to get the value of the
agreed clauses.

Typed clauses can also be used to perform advertisement and matchmaking in the
Condor style [RAM 98]. Both parties can expose their interfaces (advertisements) to
a matchmaker or broker. To determine if the two parties are a suitable match, the
coupling contract can be generated and validated.

The clauses belonging to the interfaces will specify what information is shared (pro-
vided or required) for the matchmaking. And the type of the clauses will specify how the
information is shared for the coupling.

7.3.3 Deployment contracts example

In this section we show how the concepts introduced in Section 7.3.2 can be merged
and applied to provide full separation of roles: developer, infrastructure manager, and
user. Specifically, we aim at creating deployment contracts between the applications
and the deployment descriptors using the Grid middleware ProActive. We will show
how the deployment framework can benefit from the use of: technical services, virtual
node descriptors, and coupling contracts to deploy unfamiliar applications with unfa-
miliar infrastructures.

The example presented in this section uses the fault-tolerance mechanism provided
by ProActive, presented in Chapter 6.3.3.1. The fault-tolerance is based on rollback
recovery. Several parametrized protocols can be used, with regard to the application
requirements and the characteristics of the infrastructure.

The application specifies its provisions and requirements in the virtual node descrip-
tor. Figure 7.4 shows an example for a master-worker application. Symmetrically, Fig-
ure 7.6 shows the provisions and requirements of the descriptor. The coupling contract is
composed of the clauses specified in both, and the values of this contract will be used in
the virtual node descriptor (Figure 7.4), application (Figure 7.5), and in the deployment
descriptor (Figure 7.7).

VN_MASTER & VN_WORKERS are of Descriptor type. These clauses will hold the
required and provided names of the virtual nodes.

NUM_NODES is of type Application-Priority. The virtual-node-descriptor specifies that
the application requires 16 nodes. The descriptor-interface specifies that this value
must be grater than zero, and smaller than the maximum number of allowed
nodes.

FT_PROTOCOL is of type Descriptor-Priority. The virtual node descriptor specifies
that the application requires the fault-tolerance protocol to be either cic or pml,
suggesting cic as the default value. On the other hand, the descriptor-interface
specifies that the protocol must be one of: pml, cic.

ARCH is of type Application-Priority. The virtual-node-descriptor specifies that the ar-
chitecture must be configured to x86 because it provides specific binary code for
this architecture. The descriptor-interface provides the following architectures:
x86, sparc, ppc, and any.
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OS is of type Application-Priority. The virtual-node-descriptor specifies that the operat-
ing system must be configured to Linux because it provides specific binary code for
this operating system. The descriptor-interface provides the following operating
systems: Linux, MacOS, Windows, and any.

In the virtual node descriptor, the developer activates the fault-tolerance technical
service for the master virtual-node, since it represents a single point of failure in the
application. The protocol used for fault-tolerance will correspond to the agreed value of
the coupling contract, which in the example corresponds to pml. The developer also spec-
ifies the required number of nodes, which is validated using the virtual node descriptor
against the allowed minimum. On the other hand, the infrastructure manager specifies
in the descriptor the optimistic maximum number of nodes that the infrastructure can
provide, and validates the application’s required number of nodes using the clause con-
straints.

The architectures and operating systems that are supported by the infrastructure
are specified in the descriptor using typed clauses. The application requirements are
also specified as clauses, but in the virtual node descriptor. This is useful for applications
that have binary code which runs only on a specific operating system with a specific
infrastructure. When the coupling contract is generated, both descriptor and application
have reached an agreement on the characteristic of the resources. In the example the
agreement corresponds to: Linux, x86.

7.3.4 Contract: related work

The problem of finding suitable resources for a given application have already been
addressed by techniques such as matchmaking in Condor [RAM 98, RAM 03], collections
in Legion [CHA 97], or using resource management architectures like Globus [CZA 98].

However, the approaches presented in this work not only focus on acquiring re-
sources, but also on generating contractual agreements during the deployment process.

Therefore, our approach pertains more to Service Level Agreement, and more specif-
ically, how to manage the negotiation, in order to end up with an agreement between
what is usually called customers and providers: e.g. with the help of software agents to
coordinate the negotiation, as in [GRE 06], or orchestrated along a specific algorithm in
the Meta Scheduling Service described in [WIE 06].

Another related approach corresponds to the Web Services Agreement Specifica-
tion [AND 05b] (WS-Agreement), which is about to become a draft recommendation of
the Global Grid Forum [FOR 04]. The WS-Agreement is a two layer model: Agree-
ment Layer and Service Layer. Many of the concepts introduced in our work find their
reflection in the Agreement Layer. According to the specification ”an agreement de-
fines a dynamically-established and dynamically-managed relationship between par-
ties”, much like the proposed coupling contracts. Also, the proposed coupling inter-
faces can be seen as agreement templates in WS-Agreement, since they are both used
to perform advertisement. Additionally, in the same way that interfaces and contracts
are composed of clauses, in WS-Agreement templates and agreements are composed of
terms. Finally, the concept of constraints is present in both approaches.

The similarity of our proposed approach and WS-Agreement Specification is encour-
aging when we consider that both were conceived independently. On the other hand,
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<virtual-nodes>
<clauses>
<interface name="application-master-worker-interface">

<Descriptor name="VN_MASTER" />
<Descriptor name="VN_WORKERS" />

<ApplicationPri name="NUM_NODES" value="16"/>

<DescriptorPri name="${FT_PROTOCOL}" value="cic">
<or>
<equals>cic</equals>
<equals>pml</equals>

</or>
</DescriptorPri>

<ApplicationPri name="ARCH" value="x86"/>
<ApplicationPri name="OS" value="Linux"/>

</interface>
</clauses>

<virtual-node name="${VN_MASTER}">
<technical-service type="service.FaultTolerance"/>

</virtual-node>

<virtual-node name="${VN_WORKERS}">
<processor architecture="${ARCH}"/>
<os name="${OS}"/>
<nodes required="${NUM_NODES}" minimum="10"/>

</virtual-node>
</virtual-nodes>

Figure 7.4: Application: VN Descriptor

//If the application and descriptor can not be coupled an exception will be thrown
ProActiveDescriptor pad = ProActive.getProactiveDescriptor("descriptor.xml", "vn-descriptor.xml"

);

//Retrieving Clauses from the Contract
CouplingContract cc = pad.getCouplingContract();
String vnMasterName = cc.getValue("VN_MASTER");
String vnWorkersName = cc.getValue("VN_WORKERS");

VirtualNode vnMaster=pad.getVirtualNode(vnMasterName);
VirtualNode vnWorkers=pad.getVirtualNode(vnWorkersName);
...

Figure 7.5: Application Code
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<clauses>
<interface name="descriptor-master-worker-interface">
<Descriptor name="VN_MASTER" value="vn-master"/>
<Descriptor name="VN_WORKERS" value="vn-workers"/>

<Descriptor name="MAX_NODES" value="100"/>
<ApplicationPri name="NUM_NODES" value="1">
<and>
<biggerThan>0</biggerThan>
<smallerThan>${MAX_NODES}</smallerThan>

</and>
</ApplicationPri>

<DescriptorPri name="${FT_PROTOCOL}" value="pml">
<or>
<equals>pml</equals>
<equals>cic</equals>

</or>
</DescriptorPri>

<ApplicationPri name="ARCH" value="any">
<or>
<equals>x86</equals>
<equals>ppc</equals>
<equals>sparc</equals>
<equals>any</equals>

</or>
</ApplicationPri>
<ApplicationPri name="OS" value="any">
<or>
<equals>Linux</equals>
<equals>MacOS</equals>
<equals>Sun</equals>
<equals>any</equals>

</or>
</ApplicationPri>

</interface>
</clauses>
...

Figure 7.6: Deployment Descriptor Interface
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...
<virtualNodesDe�nition>
<virtualNode name="${VN_MASTER}" serviceId="ft-serv"/>
<virtualNode name="${VN_WORKERS}"/>
</virtualNodesDe�nition>

...
<technicalServiceDe�ntions>
<service id="ft-serv" class="services.FaultTolerance">
<arg name="proto" value="${FT_PROTOCOL}"/>
<arg name="server" value="rmi://host/FTServer"/>
<arg name="TTC" value="60"/>

</service>
</technicalServiceDe�nitions>
...

Figure 7.7: Deployment Descriptor

the main difference in the approaches is that the definition of a protocol for negotiating
agreements is outside of the WS-Agreement Specification scope.

From the WS-Agreement perspective, typed clauses can be seen as an automated
negotiation approach because they provide an automated mechanism for accepting or
rejecting an agreement.

7.3.5 Conclusion and perspectives

In this section we have addressed the separation of roles: application developer, infras-
tructure manager, and user. We have identified that agreements must be made between
these different roles in order to execute the application on a distributed infrastructure:
desktop machines, clusters, and Grids.

We have argued that the key moment to perform an agreement corresponds to the de-
ployment time. During the deployment, the application and infrastructure must reach
a contractual agreement. The contract will allow the execution of the application on
distributed resources by specifying, among others, the technical services.

To generate the deployment contract we have described the application’s provisions
and requirements using virtual-node-descriptors, and symmetrically, we have specified
the infrastructure provisions and requirements in deployment descriptor interfaces.

In the future we would like to simplify the coupling contracts to allow negotiation
with typeless clauses, using constraint satisfaction instead. We would also like to inves-
tigate dynamic renegotiation of contracts after the deployment.

Furthermore, this work will be standardized as an European Grid standard [GRI b]
by the GridComp European project.
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Chapter 8

Conclusion

Grid computing provides a large amount of gathered computational resources. This
power attracts new users to Grids. Thanks to this huge number of resources, Grids seem
to be well adapted for solving very large combinatorial optimization problems. Never-
theless, Grids introduce new challenges that emphasis the need of new infrastructures
and frameworks to hide all Grids related issues.

We proposed a parallel branch-and-bound framework for solving combinatorial opti-
mization problems, the framework addresses the specificity of Grid computing, partic-
ularly the heterogeneity, the deployment, the communication, the fault-tolerance, and
the scalability. Our framework relies on a peer-to-peer infrastructure that allows to dy-
namically acquire resources from desktop machines and clusters.

Our contributions may be listed as follows:

• Thanks to an analysis of existing Grid infrastructures and of existing branch-and-
bound frameworks, we identified the requirements that our contributions have to
fulfill:

– the infrastructure has to allow building Grids by mixing desktop machines
and clusters, to enable deployment of communicating applications, and to be
able of achieving computations that take months on clusters; and

– the framework has to allow communication between processes, the implemen-
tation of different search tree algorithms, sharing the best current bound, and
to be fault-tolerant.

• A desktop Grid infrastructure based on an unstructured peer-to-peer architecture,
fully integrated to the ProActive Grid middleware. With which we achieved:

– deployed a permanent Grid at INRIA Sophia lab, named INRIA Sophia P2P
Desktop Grid, gathering a total of 260 desktops; and

– a world computation record by solving the n-queens problem with 25 queens,
the computation took 6 months to complete.

• Grid’BnB a parallel branch-and-bound framework for Grids, which focuses on hid-
ing all Grid issues to users. Its main features are:

– hierarchical master-worker architecture with communication between work-
ers;

– dynamic task splitting;
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– organizing workers in groups to optimize inter-cluster communications; and

– fault-tolerance.

• Large-scale experiments by mixing INRIA Sophia P2P Desktop Grid machines to
clusters from a French-wide Grid, Grid’5000, with which we deployed n-queens on
1007 CPUs.

• Improvements of Grid application deployment mechanisms:

– a node localization mechanism that allows to determine if two nodes are de-
ployed on the same cluster;

– a framework for deploying and configuring non-functional application require-
ments, such as fault-tolerance or load-balancing;

– a mechanism to describe application requirements; and

– a load-balancing mechanism based on the peer-to-peer infrastructure.

A large part of this thesis work on desktop Grid are now subject to industrialization
efforts to make it as a production desktop Grid, especially with the development of a
specific job scheduler and tools to ease the infrastructure administration.

Some parts of our application Grid deployment research is now considered as a base
for Grid standardization at European level, particularly with the CoreGrid and Grid-
Comp projects.



Part II

Résumé étendu en français
(Extended french abstract)
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Chapter 9

Introduction

L’objectif principal de cette thèse est de proposer une bibliothèque adaptée aux envi-
ronnements de Grilles de calcul pour la résolution de problèmes d’optimisation combi-
natoire basée sur l’algorithme « Élagage et Branchement » (de l’anglais, Branch-and-
Bound). Comme nous visons les Grilles à grande échelle, cette thèse propose aussi une
infrastructure basée sur une architecture de type pair-à-pair. Cette infrastructure per-
met en outre de créer des Grilles en combinant aussi bien des ordinateurs de bureau
que des grappes de calcul.

9.1 Problématique

Ces dernières années les Grilles de calcul ont été très largement déployées autour
du monde afin de fournir des outils de calcul très performants pour la recherche et
l’industrie. Les Grilles rassemblent un très grand nombre de ressources hétérogènes qui
sont géographiquement distribuées en une seule organisation virtuelle. Les ressources
sont le plus souvent organisées en grappes de calcul, qui sont administrées par dif-
férents domaines (laboratoires, universités, etc.).

L’algorithme de « branch-and-bound » est une technique pour la résolution de prob-
lèmes, tels que ceux de la classe optimisation combinatoire. Cette technique a pour
but de trouver la solution optimale d’un problème donné et de prouver qu’aucune autre
solution n’est meilleure. L’algorithme procède en divisant le problème original en sous-
problèmes de tailles inférieures pour lesquels la fonction de résolution ou « objective
function » (en anglais) calcule les bornes inférieures/supérieures.

A cause de la grande taille des problèmes à résoudre (nombre d’énumérations et/ou
NP-difficile), trouver la solution optimale pour un problème donné peut s’avérer im-
possible sur un simple ordinateur. Toutefois, il est relativement aisé de paralléliser
l’algorithme de « branch-and-bound » et, grâce au très grand nombre de ressources que
les Grilles fournissent, elles semblent bien adaptées à la résolution de problèmes très
importants en taille avec le « branch-and-bound ».

En parallèle du développement des Grilles de calcul, une nouvelle approche, dite
pair-à-pair, pour le partage et l’utilisation de ressources a été aussi développée. Le pair-
à-pair se concentre sur le partage de ressources, la décentralisation, la dynamicité et la
tolérance aux pannes.
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Les utilisateurs des Grilles n’ont généralement accès qu’à une ou deux grappes de
calcul et ils doivent, de plus, partager leur temps d’utilisation avec les autres utilisa-
teurs ; le plus souvent il ne leur est d’ailleurs pas permis d’exécuter des calculs qui
prendraient des mois à terminer. Plus généralement l’utilisation exclusive de la grappe
pour leurs expérimentations ne leur est pas autorisée. Ensuite, ces chercheurs tra-
vaillent dans des laboratoires ou des institutions qui sont très bien équipés en ordi-
nateurs de bureau ; ces derniers étant le plus souvent sous-utilisés et utilisables par
une utilisatrice unique. En outre, ces ordinateurs sont hautement volatiles (par exem-
ple : éteints, redémarrage, pannes). Ainsi organiser ces ordinateurs de bureau, comme
un réseau pair-à-pair pour le calcul ou plus généralement le partage de ressources, est
devenu de plus en plus populaire.

Toutefois les modèles et les infrastructures existants pour le calcul pair-à-pair sont
assez limités avec principalement l’exécution de tâches indépendantes le plus souvent
sans communication entre elles. Cependant, le pair-à-pair semble bien adapté aux ap-
plications avec un faible rapport communications/calculs, comme par exemple les algo-
rithmes de recherche parallèle. Nous proposons donc dans cette thèse une infrastructure
pair-à-pair composée de nœuds de calculs pour les applications distribuées communi-
cantes, comme une bibliothèque de « branch-and-bound » pour les Grilles.

De plus, la Grille introduit de nouveaux défis qui doivent être pris en comptent par
l’infrastructure et la bibliothèque. Ces défis peuvent être listés comme suit :

• Hétérogénéité : les Grilles rassemblent des ressources provenant de différents
sites institutionnels (laboratoires, universités, etc.). Cet ensemble de ressources
implique des ressources de différents constructeurs informatique, différents sys-
tèmes d’exploitation et l’utilisation de différents protocoles réseau. Au contraire,
chacun des sites est le plus souvent composé d’une seule grappe de calcul qui
est un environment informatique très homogène (même matériel, même système
d’exploitation, même architecture réseau pour l’ensemble des ordinateurs de la
grappe).

• Déploiement : le grand nombre de ressources hétérogènes complique la tâche du
déploiement en termes de configurations et de connections aux ressources dis-
tantes. Les sites doivent être spécifiés avant le déploiement ou automatiquement
découverts à l’exécution.

• Communication : la résolution de problèmes d’optimisation combinatoire, même
en parallèle avec un très grand nombre de ressources, peut s’avérer très difficile.
Néanmoins l’utilisation de communications entre les processus distribués peut
améliorer le temps d’exécution. Cependant, les Grilles ne sont pas le meilleur envi-
ronnement pour les communications et ce, à cause des problèmes d’hétérogénéité,
de latence importante entre les sites et de passage à l’échelle.

• Tolérance aux pannes : les Grilles sont composées de ressources hétérogènes qui
sont administrées par des domaines différents, ainsi la probabilité d’avoir des
nœuds fautifs ne sont pas négligeables.

• Passage à l’échelle : c’est l’un des défis les plus importants. C’est aussi l’un des plus
difficiles à traiter. D’une part, pour le grand nombre de ressources que les Grilles
fournissent ; d’autre part, pour la large distribution des ressources qui implique
une latence importante et une réduction de la bande-passante.
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9.2 Objectifs et contributions

Ce travail se situe dans les domaines de recherches des infrastructures de Grilles et
des bibliothèques de « branch-and-bound » et notre principal objectif est de définir une
infrastructure et une bibliothèque pour la résolution de problèmes d’optimisation combi-
natoire spécialement adaptées des Grilles de calcul.

Les Grilles fédèrent un grand nombre de ressources hétérogènes à travers des sites
géographiquement distribués en une seule organisation virtuelle. Grâce à ce nombre
important de ressources qu’elles fournissent, les Grilles peuvent être utilisées pour la
résolution de gros problèmes avec l’algorithme de « branch-and-bound ». Néanmoins, les
Grilles introduisent de nouveaux challenges comme le déploiement, l’hétérogénéité, la
tolérance aux pannes et le passage à l’échelle.

Dans cette thèse, nous considérons que certains de ces challenges doivent être traités
par l’infrastructure de Grilles sous-jacentes, tout particulièrement le déploiement, le
passage à l’échelle et l’hétérogénéité ; et que les autres challenges ainsi que le pas-
sage à l’échelle doivent être pris en compte par la bibliothèque. Dans l’infrastructure
de Grilles proposée cette thèse, nous voulons faciliter l’accès à un grand ensemble de
ressources. De plus, avec cet ensemble de ressources nous voulons aussi fournir une
bibliothèque qui soit capable de tirer partie de cette importante puissance de calcul. En
outre, l’infrastructure et la bibliothèque doivent cacher toutes les difficultés liées aux
Grilles.

Les principales contributions de cette thèse sont :

• une analyse des architectures pair-à-pair existantes, et plus particulièrement celles
pour les Grilles de calcul ;

• une analyse des bibliothèques de « branch-and-bound » pour les Grilles ;

• une infrastructure pair-à-pair pour les Grilles de calcul, qui permet de combiner
les ordinateurs de bureau ainsi que les grappes de calcul ; l’infrastructure est dé-
centralisée, auto-organisée et configurable ;

• cette infrastructure a été déployée de manière opérationnelle comme une Grille de
bureau permanente au laboratoire INRIA de Sophia Antipolis, avec laquelle nous
avons pu réaliser un record mondial de calcul en résolvant le problème des n-reines
avec 25 reines ; et

• une bibliothèque de « branch-and-bound » pour les Grilles qui est basée sur une ar-
chitecture maître-travailleur hiérarchique et qui fournit de manière transparente
un système de communication entre les tâches.

9.3 Plan

Ce document est organisé comme suit :

• Le Chapitre 2 positionne notre travail dans le contexte des Grilles de calcul. Tout
d’abord, nous donnons une vue d’ensemble des systèmes existants de Grilles ; ce
qui nous permet de faire ressortir ce qui doit être amélioré. Ensuite, nous définis-
sons la notion de systèmes pair-à-pair et nous montrons que ces systèmes peuvent
fournir des Grilles plus dynamiques et flexibles. Nous positionnons aussi notre tra-
vail avec les systèmes pair-à-pair existants pour les Grilles. En plus, nous présen-
tons les modèles existants de « branch-and-bound » pour les Grilles et nous relions
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notre travail aux autres bibliothèques pour les Grilles. Pour finir, nous décrivons
le modèle à objets actifs et le « middleware » ProActive sur lesquels notre travail
repose.

• En Chapitre 3, nous proposons une infrastructure de Grille de bureau basée sur
une architecture pair-à-pair avec laquelle nous avons été les premiers à résoudre
le problème des n-reines avec 25 reines : ce calcul a pris 6 mois pour terminer.

• Dans le Chapitre 4, nous décrivons notre bibliothèque pour les Grilles de « branch-
and-bound » pour la résolution de problèmes d’optimisation combinatoire. Nous
y reportons aussi nos expérimentations avec le problème du « flow-shop » sur la
Grille française de taille nationale, Grid’5000.

• Le Chapitre 5 décrit une extension de notre infrastructure pair-à-pair pour per-
mettre de combiner les ordinateurs de bureau et les grappes de calcul. Avec cette
Grille à grande échelle, nous rapportons nos expérimentations avec les problèmes
des n-reines et du « flow-shop ».

• Le Chapitre 6 présente le système de déploiement fournit par ProActive. Nous y
présentons aussi quelques améliorations : la localisation des nœuds sur une Grille
(ce mécanisme est utilisé par l’implémentation de notre bibliothèque de « branch-
and-bound » afin d’optimiser les communications), le déploiement de services non-
fonctionnels (comme la tolérance aux pannes ou l’équilibrage de charges), et un
système qui permet de décrire les besoins nécessaires d’une application à déployer.
Ensuite, nous présentons un mécanisme d’équilibrage de charges reposant sur
notre infrastructure pair-à-pair.

• En Chapitre 7, nous donnons une vue d’ensemble de nos travaux courants et des
améliorations que nous envisageons dans un futur proche.

• Pour finir, le Chapitre 8 conclut et résume les contributions majeures de cette
thèse.



Chapter 10

Résumé

10.1 État de l’art et Positionnement

Dans ce chapitre, nous justifions notre choix d’un système pair-à-pair pour l’acquisition
de ressources de calcul sur les Grilles. Pour se faire, nous évaluons les systèmes de
Grilles et pair-à-pair existants ainsi que les bibliothèques existantes de « branch-and-
bound » pour les Grilles. Nous identifions les problèmes non traités par ces bibliothèques
dans le but de justifier notre modèle pour notre bibliothèque de « branch-and-bound »
pour les Grilles.

10.1.1 Grilles de calcul

L’un des objectifs fondamentaux des Grilles est de fournir un accès aisé voire transpar-
ent à des ressources de calcul hétérogènes et réparties sur des domaines administratifs
différents. Ceci est également dénommé « virtualisation des ressources ». Notre ob-
jectif est d’offrir à la fois un environnement d’exécution réalisant la virtualisation et
une bibliothèque de programmation permettant de résoudre de manière optimale des
problèmes d’optimisation combinatoire dans un environnement d’exécution de Grilles.

La plupart des Grilles sont des infrastructures statiques et utilisent des grappes de
calcul dédiées. L’inclusion d’ordinateurs supplémentaires à ces organisations virtuelles
doit être le plus souvent prévue et budgetée longtemps à l’avance. Il n’est donc pas pos-
sible de rajouter dynamiquement des ressources libres d’un site pour temporairement
augmenter la puissance de calcul de la Grille. Pratiquement toutes les Grilles déployées
actuellement sont des plates-formes expérimentales pour aider les chercheurs à dévelop-
per la prochaine génération.

Bien que la plupart des projets de Grilles soient définies comme des Grilles, ces
infrastructures manquent de dynamicité pour répondre à la définition de Grille donnée
dans cette thèse. C’est pourquoi nous proposons d’utiliser une infrastructure pair-à-pair
pour inclure dynamiquement des ressources dans une Grille.

10.1.2 Pair-à-Pair

Il existe différentes sortes de réseaux pair-à-pair telles que les architectures maître-
travailleur, les réseaux pur pair-à-pair, les réseaux hybrides, ou encore les tables de «
hashage » distribué. Dans cette section nous montrons que les réseaux dit pur pair-à-
pair sont les plus adpatés pour la Grille. Un réseau pair-à-pair dit « pur » peut être
défini comme suit :
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Un système distribué est appelé Pair-à-Pair (P-to-P, P2P, etc.), si les nœuds
de ce réseau partagent une partie de leurs ressources (temps de calcul, espace
disque, interface réseau, imprimante, etc.). Ces ressources sont nécessaires
pour fournir les services et les contenus offerts par le système (e.g. le partage
de fichiers ou les espaces de travail collaboratifs). Ils sont accessibles directe-
ment par les autres pairs sans passer par des entités intermédiaires. Les par-
ticipants de ce genre de réseau sont à la fois des fournisseurs de ressources
(services et contenus) et des utilisateurs de ces ressources. Ils sont ainsi clients
et serveurs. Ces réseaux sont considérés comme « Pur Pair-à-Pair » si l’on
peut enlever de façon arbitraire un nœud de ce réseau sans qu’il y ait aucune
dégradation ou perte du service offert par ce réseau.

10.1.3 « Branch-and-Bound »

L’algorithme de « branch-and-bound » est une technique pour résoudre les problèmes
de recherche, tel que le voyageur de commerce ou bien les problèmes d’ordonnancement.
Cette technique permet de trouver la meilleure solution pour une instance de problèmes
donnés et de prouver qu’aucune autre solution est meilleure.

Dans ce chapitre, nous avons positionné le travail de cette thèse dans le contexte des
Grilles de calcul. Nous avons aussi montré que les communautés des Grilles et du pair-
à-pair partagent le même objectif : la coordination et le partage de grands ensembles de
ressources distribuées. De plus, nous avons démontré la validité d’utiliser une approche
pair-à-pair comme infrastructure de Grille. Nous avons aussi justifié les besoins et les
caractéristiques de notre bibliothèque de « branch-and-bound » pour les Grilles.

10.1.4 Conclusion

Cette thèse se concentre sur la couche « Grid middleware » avec l’infrastructure pair-à-
pair et sur la couche « Grid programming » avec la bibliothèque de « branch-and-bound
». Cette thèse traite tous les défis des Grilles que nous avons introduits : la distri-
bution, le déploiement, les multiples domaines d’administration, le passage à l’échelle,
l’hétérogénéité, la haute-performance, la dynamicité et les modèles de programmation.

Nous affirmons ainsi que les infrastructure de Grilles doivent être dynamiques pour
permettre l’inclusion de nouveaux sites. Nous proposons donc une infrastructure pair-
à-pair pour le partage de ressources de calcul. Dans cette thèse, nous proposons aussi
une bibliothèque de « branch-and-bound » adaptée aux Grilles.

10.2 Pair-à-Pair de bureau

Dans ce chapitre, nous présentons la première partie de la contribution de cette thèse,
qui est une infrastructure de Grilles. L’infrastructure proposée est en fait basée sur
une architecture pair-à-pair. Le principal objectif de cette infrastructure est de gérer un
grand ensemble de ressources et grâce à l’infrastructure, les applications ont un accès
facilité à ces ressources.

Dans le Chapitre 2, nous avons identifié les spécificités des Grilles de calcul. En
outre, nous avons montré que les Grilles et les réseaux pair-à-pair partagent le même
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but et, ainsi, que les architectures pair-à-pair peuvent être utilisées comme infrastruc-
tures pour les Grilles.

Notre infrastructure pair-à-pair pour la construction de Grilles est un réseau pair-
à-pair non-structuré qui permet de partager des ressources de calcul. Elle est aussi
capable de déployer et de terminer des calculs qui prendraient des mois à terminer sur
des grappes de calcul.

Dans le but de valider notre approche, nous avons déployé une Grille de bureau
permanente gérée par notre infrastructure pair-à-pair dans notre laboratoire. Cette
Grille fédère les ordinateurs de bureau sous-exploités de l’INRIA Sophia. Avec cette
infrastructure expérimentale, nous sommes les premiers au monde à avoir résolu le
problème des n-reines pour 25 reines. Ce calcul a pris six mois et a permis de valider
notre infrastructure pour l’exécution de longs calculs.

De plus, nous avons aussi montré les possibilités de l’infrastructure à gérer et à
déployer des applications non-Java, tout comme TELEMAC-2D qui est une application
de type SPMD-MPI.

10.3 « Branch-and-Bound » : une bibliothèque communicante

Dans le Chapitre 2, nous avons introduit les principes du « branch-and-bound » paral-
lèle et nous avons aussi identifié les besoins auxquels une bibliothèque de « branch-and-
bound » pour les Grilles doit répondre. Avec ces besoins, nous présentons maintenant la
seconde partie de la contribution de cette thèse, une bibliothèque de « branch-and-bound
» parallèle pour les Grilles de calcul. Cette bibliothèque est dénommée Grid’BnB.

Grid’BnB est une bibliothèque qui aide les utilisateurs à résoudre des problèmes
d’optimisation combinatoire. La bibliothèque cache tous les problèmes liés aux Grilles,au
parallèlisme et à la distribution. Elle est basée sur une architecture maître-travailleur
hiérarchique avec des communications entre les travailleurs. Les communications sont
en fait utilisées pour partager la meilleure borne afin d’explorer moins de parties de
l’arbre de recherche et ainsi diminuer le temps d’exécution pour résoudre le problème
donné. Comme les Grilles sont des environnements parallèles à grande-échelle, nous
proposons d’organiser les travailleurs en groupes de communications. Ces groupes re-
flètent la topologie de la Grille sous-jacente. Cette propriété a pour but d’optimiser
les communications inter-grappes de calcul et de mettre à jour le plus rapidement la
borne globale sur tous les travailleurs. Grid’BnB propose aussi différents algorithmes
de générations d’arbres de recherche pour que les utilisateurs puissent choisir le plus
adapté au problème à résoudre. Pour finir, la bibliothèque est tolérante aux pannes.

Les expérimentations ont montré que Grid’BnB passe à l’échelle sur une vraie Grille
de taille nationale, Grid’5000. Ainsi, nous avons pu déployer un problème d’optimisation
combinatoire, le « flow-shop », sur une Grille composée de 621 processeurs répartis sur
cinq sites.

Finalement, nous pensons que Grid’BnB peut être utilisée sans modification pour
d’autres algorithmes que celui de « branch-and-bound », comme par exemple l’algorithme
de « diviser pour régner » ou encore le skeleton de ferme. De manière plus générale,
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Grid’BnB est une bibliothèque pour le calcul parallèle qui vise la résolution de prob-
lèmes parallèle.

10.4 Grappes de calcul et Grille de bureau

Ce chapitre rapporte nos expérimentations à grand-échelle avec la bibliothèque Grid’BnB
et l’infrastructure pair-à-pair, avec lesquelles nous avons construit une Grille composée
d’ordinateurs de bureau (INRIA Sophia P2P Desktop Grid) et de grappes de calcul
(Grid’5000).

Nous montrons ainsi que Grid’BnB, utilisé avec l’infrastructure pair-à-pair, permet
des déploiements à grande échelle sur des Grilles composées d’ordinateurs de bureau et
de grappes de calcul.

Nous avons aussi montré que l’infrastructure pair-à-pair peut être utilisée comme
infrastructure de Grille pour rassembler les ressources disponibles d’une Grille. Ainsi,
une application processeur intensif, comme les n-reines, peut dynamiquement acquérir
les ressources disponibles, même si elles ne le sont que pour quelques minutes.

10.5 Déploiement et améliorations

Le premier objectif traité par cette thèse était de fournir une infrastructure dynamique
pour les Grilles de calcul. Cette infrastructure est basée sur une architecture pair-à-
pair non-structurée qui permet de combiner des ordinateurs de bureau et des grappes
de calcul.

Le deuxième objectif était une bibliothèque de « branch-and-bound » parallèle pour
les Grilles afin de résoudre des problèmes d’optimisation combinatoire. Cette biblio-
thèque repose sur le paradigme maître-travailleur avec des communications entre les
travailleurs dans le but d’optimiser la résolution des problèmes.

Le lien entre notre bibliothèque et notre infrastructure est le déploiement. Dans
ce chapitre nous présentons une amélioration du système de déploiement fournit par
ProActive afin de permettre la localisation de nœuds sur les Grilles. Ce mécanisme est
utilisé par notre bibliothèque de « branch-and-bound » dans le but d’organiser les tra-
vailleurs en groupes pour réduire le coût des communications.

Ensuite, nous décrivons une seconde amélioration avec un mécanisme pour la config-
uration et le déploiement de services non-fonctionnels, nommés technical services. Ces
services sont la tolérance-aux-pannes et l’équilibrage de charges, par exemple.

Enfin, nous proposons un mécanisme nommé virtual nodes descriptors qui permet
de décrire les besoins d’une application. Les programmeurs peuvent ainsi spécifier les
contraintes de déploiement de leurs applications. Les contraintes sont par exemple les «
technical services » à déployer, le nombre minimal de nœuds nécessaires, ou bien encore
les architectures machines.

Finalement, nous présentons le « technical service » d’équilibrage de charges qui est
basé sur l’infrastructure pair-à-pair.
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10.5.1 Localisation de nœuds sur Grilles

ProActive a réussit dans son système de déploiement à complètement enlever les scripts
pour la configuration, l’acquisition des ressources et le démarrage du calcul. ProActive
fournit, comme clef au problème du déploiement, une abstraction dans le code source de
l’infrastructure physique dans un but de flexibilité.

Dans le contexte de cette thèse, nous avons proposé d’organiser les travailleurs en
groupes pour optimiser les communications dans la bibliothèque de « branch-and-bound
». Le critère de sélection pour l’appartenance à un groupe est la localisation physique
d’un travailleur sur une grappe de calcul. Ainsi, la localisation des nœuds sur une
Grille est un problème important pour une implémentation efficace de notre biblio-
thèque Grid’BnB. Nous proposons donc un mécanisme de localisation des nœuds sur
une Grille. Ce mécanisme peut aussi être utilisé par toutes sortes d’applications pour
optimiser les communications entre les objets actifs qui sont distribués sur une Grille,
ou bien à faire de la localisation de données.

Nous avons ainsi étendu le système de déploiement fournit par ProActive avec un
mécanisme de marqueurs, permettant aux applications de déterminer si deux nœuds
ont été déployés par le même graphe de déploiement.

De plus, ce mécanisme de marqueurs est utilisé par l’implémentation de notre bib-
liothèque, Grid’BnB, pour optimiser les communications entre les grappes de calcul.

10.5.2 Services Techniques pour les Grilles

Cette dernière décennie est apparue une identification des aspects non-fonctionnels
pour le développement de logiciels flexibles et adaptatifs. Nous proposons d’étendre
le système de déploiement de ProActive avec un mécanisme qui permet de définir dy-
namiquement des services non-fonctionnels, technical services, pour la Grille et, prenant
en compte aussi bien les besoins de l’application que les contraintes de l’infrastructure.

Les « technical services » permettent aux déployeurs d’appliquer et de configurer les
besoins non-fonctionnels des applications. Cependant, les déployeurs doivent connaître
à l’avance les services non-fonctionnels dont les applications ont besoin. Afin de résoudre
ce manque de connexion entre les programmeurs et les déployeurs, nous proposons dans
le chapitre suivant une solution.

10.5.3 Descripteur de nœud virtuels

Dans ce chapitre nous proposons un mécanisme aux programmeurs afin qu’ils puissent
spécifier les besoins en services non-fonctionnels de leurs applications, et ainsi permet-
tre aux déployeurs de configurer ces services en fonction de l’infrastructure.

Ce mécanisme est descripteur au niveau de l’application où la programmeuse spécifie
les besoins environnementaux, comme les « technical services ». Ainsi le déployeur peut
appliquer la configuration optimale afin de remplir ces contraintes.

10.5.4 Équilibrage de charges sur une infrastructure pair-à-pair

Nous avons, avec la collaboration du Dr. Javier Bustos, développé un « technical ser-
vice » pour l’équilibrage de charges. Ce service est spécialement fait pour tirer partie
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de l’infrastructure pair-à-pair et permet de répartir dynamiquement les activités d’une
application sur une Grille de bureau.

10.6 Travaux en cours et perspectives

Ce chapitre introduit les travaux en cours et futurs basés sur les contributions de cette
thèse. Nous travaillons actuellement sur un ordonnanceur de tâches qui permet aux per-
sonnes de l’INRIA Sophia d’utiliser en toute liberté la Grille INRIA Sophia P2P Desktop
Grid. De plus, nous travaillons à améliorer le mécanisme de découverte des ressources
de l’infrastructure pair-à-pair. Pour le moment, nous envisageons deux manières dif-
férentes pour atteindre cet objectif : d’une part, en modifiant le protocole de messages ;
d’autre part en introduisant un marqueur de pairs.

La bibliothèque de « branch-and-bound » est aussi sujette à des amélioration en
cours, notamment avec l’amélioration de notre implémentation du problème du « flow-
shop ». Nous envisageons aussi de faire plus d’expérimentations à grandes échelles en
utilisant des grappes de calcul localisées aux Pays-Bas et au Japon.

Pour finir, nous travaillons aussi sur le déploiement d’applications sur les Grilles.
Nous sommes en train de fournir un mécanisme de contrats entre les développeurs, les
administrateurs d’infrastructures et les utilisateurs d’applications.
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Conclusion

Les Grilles de calcul rassemblent et fournissent un grand nombre de ressources de cal-
cul. Cette puissance de calcul attire de plus en plus d’utilisateurs vers les Grilles. Grâce
à ce grand nombre de ressources, les Grilles sont bien adaptées à la résolution de prob-
lèmes d’optimisation combinatoire de très grande taille. Cependant, les Grilles intro-
duisent de nouveaux défis qui mettent en avant le besoin de nouvelles infrastructures
et de nouveaux outils afin de masquer les problèmes liés aux Grilles.

Dans cette thèse, nous avons proposé une bibliothèque basée sur une implémenta-
tion parallèle de l’algorithme de « branch-and-bound » pour la résolution de problèmes
d’optimisation combinatoire. Cette bibliothèque répond précisément aux spécificités
liées aux Grilles, en particulier l’hétérogénéité, le déploiement, les communications, la
tolérance aux pannes et le passage à l’échelle. Elle repose sur une infrastructure de type
pair-à-pair qui permet l’acquisition dynamique de ressources, aussi bien des ordinateurs
de bureau que de grappes de calcul.

Les contributions de cette thèse peuvent être énumérées comme suit :

• Grâce à une analyse de l’existant, aussi bien des infrastructures de Grilles que
des bibliothèques de « branch-and-bound », nous avons pu identifier les besoins
nécessaires que nos contributions doivent satisfaire :

– l’infrastructure doit permettre de créer des Grilles qui sont composées aussi
bien de ordinateurs de bureau que de grappes de calcul, mais également per-
mettre le déploiement d’applications communicantes et être capable de sup-
porter des calculs pouvant mettre des mois à terminer sur des grappes de
calcul ;

– la bibliothèque doit permettre aux différents processus de communiquer entre-
eux et l’implémentation de différents algorithmes de parcours d’arbres. Elle
doit aussi avoir un mécanisme performant pour le partage de la meilleure
borne courante et être tolérante aux pannes.

• Une infrastructure de Grille de bureau basée sur une architecture pair-à-pair non-
structurée et complètement intégrée au « middleware » de Grille ProActive. Cette
infrastructure nous a permis de :

– déployer une Grille de bureau permanente au laboratoire INRIA Sophia, nom-
mée INRIA Sophia P2P Desktop Grid, rassemblant jusqu’à 260 ordinateurs
de bureau ; et
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– d’établir un record du monde en résolvant le problème des n-reines pour 25
reines, ce calcul a pris 6 mois pour terminer.

• Grid’BnB, une bibliothèque de « branch-and-bound » parallèle pour la Grille, qui
s’efforce de cacher aux utilisateurs toutes les difficultés liées à la Grille. Ses prin-
cipales caractéristiques sont :

– une architecture maître-travailleur hiérarchique avec des communications
entre les travailleurs ;

– la division dynamique des tâches ;

– l’organisation des travailleurs en groupe afin d’optimiser les communications
inter-grappes de calcul ; et

– la tolérance aux pannes.

• Expérimentations à grande-échelle en combinant notre Grille de bureau, INRIA
Sophia P2P Desktop Grid, aux grappes de calcul de la Grille française, Grid’5000.
Avec cet environment nous avons déployé les n-reines sur 1007 processeurs.

• Amélioration des mécanismes pour le déploiement d’applications sur les Grilles :

– proposition d’un système pour la localisation de nœuds qui permet de déter-
miner si deux nœuds sont déployés sur la même grappe de calcul ;

– une bibliothèque pour le déploiement et la configuration de services non-
fonctionnels, comme la tolérance aux pannes ou le l’équilibrage de charges ;

– un mécanisme pour spécifier les besoins des applications à déployer sur les
Grilles ; et

– un mécanisme d’équilibrage de charges utilisant l’infrastructure pair-à-pair.

Une grande partie du travail de cette thèse sur les Grilles de bureau est maintenant
en cours d’industrialisation afin de fournir des Grilles de production, avec particulière-
ment le développement d’un ordonnanceur de « jobs » et d’outils pour l’administration
de l’infrastructure.

Quelques parties de notre travail sur le déploiement d’applications sur la Grille sont
considérées comme base de travail pour la normalisation de la Grille au niveau eu-
ropéen, et plus particulièrement avec les projets CoreGrid et GridComp.
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BRANCH-AND-BOUND WITH PEER-TO-PEER FOR LARGE-SCALE GRIDS

Abstract
This thesis aims at facilitating the deployment of distributed applications on large-scale

Grids, using a peer-to-peer (P2P) infrastructure for computational Grids. Furthermore, this
thesis also propose a framework for solving optimization problem with branch-and-bound (B&B)
technique.

Existing models and infrastructures for P2P computing are rather disappointing: only inde-
pendent worker tasks with in general no communications between tasks, and very low level API.
This thesis proposes to define a P2P infrastructure of computational nodes and to provide large-
scale Grids. The infrastructure is an unstructured P2P network self-organized and configurable,
also allowing deployment of communicant applications.

P2P environment seems well adapted to applications with low communication/computation
ratio, such as parallel search algorithms and more particularly B&B algorithm. In addition,
this thesis defines a parallel B&B framework for Grids. This framework helps programmers to
distribute their problems over Grids by hiding all distribution issues. The framework is built
over a hierarchical master-worker approach and provides a transparent communication system
among tasks to improve the computation speedup.

First, we realized an implementation of this P2P infrastructure on top of the ProActive Java
Grid middleware, therefore benefiting from underlying features of ProActive. The P2P infras-
tructure was deployed as a permanent desktop Grid, with which we have achieved a computation
world record by solving the n-queens problem for 25 queens. Second, we achieved an implemen-
tation of this B&B framework, also on top of ProActive. We demonstrate the scalability and
efficiency of the framework by deploying an application for solving the flow-shop problem on a
nationwide Grid (Grid’5000). Finally, we mixed this Grid with our permanent desktop Grid to
experiment large-scale deployment of both n-queens and flow-shop.

Keywords: Peer-to-Peer, Branch-and-Bound, Grid Computing

BRANCHEMENT ET ÉLAGAGE SUR GRILLES PAIR-À-PAIR À GRANDE-ÉCHELLE
Résumé

Cette thèse a pour objectif de faciliter le déploiement d’applications distribuées sur des grilles
de calcul à grande échelle, en utilisant une infrastructure pair-à-pair (P2P) pour les grilles. De
plus, cette thèse propose aussi une bibliothèque basée sur la technique « Élagage et Branchement
» (de l’anglais, Branch-and-Bound – B&B) pour résoudre les problèmes d’optimisation combina-
toire.

Les modèles et infrastructures pour le P2P existant sont plutôt décevants : seulement des
tâches indépendantes généralement sans communication entre les tâches, et des API de bas
niveau. Cette thèse propose une infrastructure P2P qui partage des noeuds de calcul, afin de
fournir des grilles à grande échelle. L’infrastructure est un réseau P2P non-structuré, auto-
organisé, configurable et qui permet le déploiement d’applications communicantes.

Les environnements P2P semblent être bien adaptés aux applications avec un faible ratio
communication/computation, comme les algorithmes de recherche parallèle et plus particulière-
ment les algorithmes de B&B. En plus d’une infrastructure P2P, cette thèse propose une biblio-
thèque de B&B parallèle pour la grille. Cette bibliothèque aide les utilisateurs, en masquant
toutes les difficultés liées à la distribution, à paralléliser leurs problèmes sur des grilles. La bib-
liothèque repose sur un modèle maître-travailleur hiérarchique et offre un système transparent
de communication afin d’améliorer la vitesse de résolution.

Nous avons tout d’abord implémenté notre infrastructure P2P au-dessus de l’intergicielle
Java pour la grille, ProActive. Cette infrastructure P2P a été déployée comme grille de bureau
de manière permanente, avec laquelle nous avons pu réaliser un record mondial de calcul en
résolvant le problème des n-reines avec 25 reines. Ensuite, nous avons aussi implémenté avec
ProActive notre bibliothèque pour le B&B. Nous montrons le passage à l’échelle et l’efficacité de
la bibliothèque en déployant sur une grille de taille nationale (Grid’5000) une application qui
résout le problème du « flow-shop ». Pour finir, nous avons mixé Grid’5000 et notre grille de
bureau pour expérimenter le déploiement à grande échelle des n-reines et du flow-shop.

Mots-clefs : Pair-à-Pair, Élagage et Branchement, Grilles de calcul
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