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Abstract

Typical Grid environments are characterized by a two-level scheduling: super and local scheduling. While the
former regards the selection of proper resources to execute high level tasks, the latter regards the scheduling of tasks
to processors for optimizing performance and hardware exploitation. This paper proposes a super scheduler that
provides services to domain specific high-level programming environments, while taking advantage of middleware
libraries to handle the complexity of Grid computing. To prove the flexibility of the scheduler, three different pro-
gramming environments with slightly different programming abstractions have been integrated with it: a problem
solving environment (SEGL), a skeleton framework (Calcium) and a workflow enactment engine (SAWE). The inte-
gration above shows how it is possible to facilitate the adoption of the ProActive middleware for the development of
complex Grid applications.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).



1 Introduction

Thanks to the increasing amount of resources available across the Internet and improvements of wide-area network
performance, Grid computing has emerging in recent years as a viable computing paradigm to solve data and compute-
intensive applications. Programming environments for building and executing applications must handle, among others,
the complexity of the Grid’s deployment, dynamicity, distribution, fault tolerance, heterogeneity, high performance,
interoperability, and scalability. Given the complexity of these concerns, it is unreasonable to charge users for directly
address them when programming their Grid applications. This has led to the development of Grid middleware deliv-
ering low-level functionalities handled in a domain independent way [19], related for example to security, low-level
resource management, monitoring, data management, efficient communication, etc. On top of such low-level middle-
ware high-level programming environments can be built. Each programming environment provides a domain specific
high-level programming model, that simplifies and hides away the complexities of the Grid.

Following this direction, we aim at further factoring complex aspects in programming Grid systems into a common
upper-middleware architecture. In particular we intend to factor common aspects of scheduling and resource manage-
ment services, such as load balancing and fault tolerance, exploited by high-level programming environments, for the
enactment of distributed and parallel applications in heterogeneous and dynamic systems.

This paper proposes a flexible super-scheduler that can be exploited by different domain specific high-level pro-
gramming environments, while taking advantage of lower-middleware libraries. In order to prove its flexibility, we
describe the integration of the scheduler with three different programming environments with slightly different pro-
gramming abstractions: a skeleton framework (Calcium [11]), a workflow engine (SAWE [29, 28]) and a problem solv-
ing environment (SEGL [15]). The super-scheduler implementation is built on top of the ProActive middleware [10]
and exploits the active object model that, by means of asynchronous method calls, allows to deal with communication
latency in wide-area networks. It uses a configurable scheduling policy and the static GCM Deployment model for the
dynamic acquisition and deployment of Grid computational resources through different creation and communication
protocols. It delivers, moreover, services of monitoring, data dependencies among jobs and fault-tolerance.

The proposed integration shows how upper-level services can facilitate the adoption of Grid middleware, such as
ProActive, to write complex Grid applications. It demonstrates, moreover, how the super-scheduler could be usefully
exploited by other distributed programming models to fit heterogeneity and dynamicity, and in particular the GCM
component model [14]. GCM is a component model for Grid computing based on Fractal [8]. GCM inherits hierarchy,
introspection and the basic controllers from Fractal, and extends it using asynchronous method calls to deal with com-
munication latencies. The reference implementation of the GCM is ProActive and it is also based on the active object
model. Currently the GCM supports a static GCM Deployment model, which can acquire remote resources through
deployment descriptors and deploy applications on the remote nodes. In a sense, the proposed super-scheduler could
represents a dynamic extension of the GCM Deployment model, by allowing dynamic acquisition of Grid resources.

This paper is organized as follows. In section 2 we provide relevant background on ProActive, Calcium, SAWE
and SEGL. Then, in section 3 we describe the scheduler archecture and main functionalities, and in section 4 we
describe how the integration between the frameworks and the scheduler is done. Finally, we conclude and provide
future perspectives in section 5.

Hence,

2 Grid Programming Environments

2.1 The ProActive Middleware

ProActive [10] is a Java library for concurrent, distributed, and mobile computing implemented on top of RMI HTTP,
RMI/SSH, and Ibis as transport layers. ProActive features transparent remote active objects, asynchronous two-way
communications with transparent futures, high-level synchronization mechanisms, and migration of active objects with
pending calls. As ProActive is built on top of standard Java APIs, it does not require any modification of the standard
Java execution environment, nor does it make use of a special compiler, preprocessor or modified Java Virtual Machine
dvMm).

Distributed and concurrent applications built using ProActive are composed of a number of medium-grained enti-
ties called active objects. Each active object has its own thread of control and is granted the ability to decide in which
order to serve the incoming method calls, which are automatically stored in a queue of pending requests. Method calls
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sent to active objects are asynchronous with transparent future objects and synchronization is handled by a mechanism
known as wait-by-necessity [9].

2.2 Problem Solving Environment: SEGL

SEGL is a system for the automated execution of Grid experiments and for the efficient use of existing Grid resources.
SEGL consists of two parts: Experiment Designer which is used for the design and debugging of experiments and Ex-
perimentEngine for controlling the execution of the applications on the Grid resources (see Figure 2). The interaction
between Experiment Engine and the Grid resources is done through a Grid Adaptor, interfacing with ProActive.

From the user’s perspective, complex experiment scenarios are realized in Experiment Designer using Grid Con-
current Language (GriCoL) to represent the experiment. The technical mapping from this user perspective to the
underlying infrastructure is carried out via the use of control flow, data flow and the repository layers. The control
flow level is used for the description of the logical schema of the experiment. The main elements of this level are
blocks: control blocks and solver blocks. A solver block is composed of nodes of data processing. It represents appli-
cations which use numerical methods of modeling. The control blocks are either nodes of data analysis or nodes for the
synchronization of data computation processes. They evaluate results and then choose a path for further experiment
development. The data flow level is used for the local description of interblock computation processes. The sublayer
provides a common description of the database and a section for making additions to the database if necessary.

The runtime system of SEGL (ExpEngine) chooses the necessary computer resources, organizes and controls the
sequence of execution according to the task flow and the condition of the experiment program. The user sets up
initial conditions and parameters using GriCoL. Then SEGL monitors and steers the experiment, informing the user
of the current status. SEGL employs a dynamic parametrization capability which requires an iterative, self-steering
approach. The communication between the Experiment Designer and the runtime system supports the monitoring of
execution of the experiment.

2.3 Skeleton Framework: Calcium

Algorithmic skeletons (skeletons for short) are a high level programming model for parallel and distributed computing,
introduced by Cole in [13]. Skeletons take advantage of common programming patterns to hide the complexity of
parallel and distributed applications. Starting from a basic set of patterns (skeletons), more complex patterns can be
built by nesting the basic ones. All the parallelization and distribution aspects are implicitly defined by the composed
skeletal structure.

A z=farm(D) | pipe(D1, Ng) | seq(fe) |
if(fbvﬁtruea Afalse) | whzle(fb,A) | fO’I"(i,A)
ma’p(fdvAafC) ‘ fork(fdvAlv"~7An7fC) | d&c(fdafb7Aafc)

Where the task parallel skeletons are: farm for task replication; pipe for staged computation; seq for wrapping
execution functions; i f for conditional branching; and while/ for for iteration. The data parallel skeletons are: map
for single instruction multiple data; fork for multiple instruction multiple data; and d&c for divide and conquer.

As a skeleton framework we use Calcium [11], which is greatly inspired on Lithium [3, 4, 5, 17] and its successor
Muskel [16]. Calcium is written in Java and is provided as a library. The Calcium framework is capable of evaluating
the same skeleton program on different execution environments. Currently it supports a parallel environment using
threads, and a distributed environment using ProActive’s active objects. The distributed environment is suitable for
short lived applications, running on a controlled environment (non-volatility, faultless, unscalable, etc..) such as a
cluster environment.

For the Grid, instead of developing support for Grid concerns into the skeleton framework, Calcium can benefit by
using a generic scheduling component, which can handle deployment, dynamicity, fault tolerance, security, scalability.

2.4 Workflow Engine: SAWE

Workflow management applied to Grid computing is emerging as an interesting and flexible paradigm to build and
manage complex scientific applications [1]. With this approach an application is a temporal composition of inde-
pendent functions provided by Grid resources, and whose data and control logic is described adopting a high-level
language interpreted by a Workflow Enactment System (WES) [30].
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SAWE (Semantic and Autonomic Workflow Engine) [29, 28] is a WES, compliant with the WfMC abstract ref-
erence model [22], whose main objective is to deliver advanced functionalities for the the creation, management and
enactment of generic workflow processes, in business, engineering and scientific domains.

SAWE is a three-layered system (see Figure 4). The Control layer is able to receive the process description in
XPDL (Xml Process Definition Language) [12], creates and navigates the process graph and chooses the activities
that could be executed according to the activation conditions. The Binding layer is responsible for associating a
concrete resource to a process activity that can be abstractly described using syntactic or semantic annotations. The
MatchM aker collaborates with the Binding layer and is responsible of resource discovery and selection of the most
appropriate resource to assign to an activity for execution. Currently the MatchMaker is available for Web Services
and uses syntactic and semantic annotations of services for performing matching functionalities. The Interaction
layer interacts with resources to enact activities using a generic Resource Inter face (RI) able to communicate with
the upper layers independently from the communication middleware. Currently, specific Rls are delivered for RMI,
Web Services, POJO, HTTP and ProActive. The interaction with the resources is demanded to a specific adapter for
each technology.

SAWE uses asynchronous invocations and is able to anticipate the execution of sequential activities with a deferred
blocking mechanism, if a proper middleware is used at interaction layer. To perform activity anticipation, the Interac-
tion layer uses the asynchronous remote invocation provided by ProActive [27], returning placeholders to the Control
layer that is so able to continue navigation in the process graph.

The dynamic binding is a crucial aspect for simplifying access to heterogeneous and distributed Grid resources
and efficiently and transparently enacting Grid workflows. At this level, SAWE currently delivers a static or dynamic
mapping of ProActive activities to resources without mechanism to manage load balancing and fault-tolerance at
resource level. To overcome the limitation, a viable solution is the integration of SAWE with the ProActive-based
Scheduler, in order to exploit its resource allocation management.

3 The Scheduler

The execution of parallel tasks on a pool of distributed resources, such as network of desktops or clusters, requires a
main component for managing resources and handling task execution. This component is typically a batch scheduler.
A batch scheduler provides an abstraction of resources to clients. Clients submit tasks and the scheduler is in charge
of executing them on the available resources. Additionally, a scheduler allows several clients to share a same pool of
resources, and also manages issues related with distributed environment such as faulted resources.

Several schedulers can be found in the literature. Some of the most known are LSF [31], PBS/OpenPBS [25],
LoadLeveler [24], and Condor [23]. The survey [6] catalogs these major systems and reports their features. Most of
them are implemented in C language and are very low-level in their implementation as well as their operating system
integration. Thus, unable to handle portability and heterogeneity.

To target heterogeneous systems, Grid programming environments have developed super-schedulers. Super-
schedulers are schedulers capable of federating several schedulers in a single one, such as Sun Grid Engine [21]
and Condor-G [20]. With the complexity of Grids, super-scheduler rely on Grid middleware (e.g. Globus [18]) in
order to handle services such as security, resource managing/monitoring, efc.

In this section, we present a super-scheduler component for Grid computing (scheduler for short), capable of
federating several other schedulers. Clients can interact with the scheduler through different mechanism: command-
line, API, GUI, and description files. In addition of a super-scheduler, we propose a Resource Manager, which is in
charge of acquiring and managing resources using constrains, such as the matchmaking algorithm [26].

3.1 Architecture

The scheduler is the central entity with which clients interact using a remote Java API, or by submitting a Job
Description. A Job describes the batch process to be executed. The description specifies the code, which can be in
Java by extending the Executable interface or any native executable; required data files; and a script for validating
resources.

Currently three kinds of jobs are supported: in Task Flow Jobs, clients describe the flow and dependencies of
tasks to execute; in Parameter Sweeping a single task is executed in parallel with multiple data; and in ProActive
Applications clients submit a regular ProActive distributed application.
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The scheduler also supports customized allocation policies, and provides a FIFO policy by default. Basic non-
functional concerns such as security and fault-tolerance are handled both at the ProActive middleware and scheduler
levels.

Finally, the management, deployment, and selection of resources is handled by a second entity, named the Resource
Manager. Figure 1 shows a global overview of the whole system.
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Figure 1: Scheduler Global Overview

3.2 Resource Manager

The Resource Manager (RM) is responsible for acquiring and managing resources. The RM is built on top of the
GCM Deployment [2]. The GCM Deployment framework is the evolution of the previous ProActive Deployment [7]
framework, which provides an abstraction of how resources can be acquired from the Grid. The deployment model
allows the acquisition of resources using heterogeneous protocols, without changing the application source code.
All information related with the deployment of the application is described in a deployment descriptor. Thus, all the
following references are eliminated from the code: machine names, resource acquisition protocols, and communication
protocols. The GCM Deployment model has been submitted for standardization to the European Telecommunications
Standards Institute (ETSI), in order to provide standards for Grid deployment.

Hence, the static acquisition of resources is handled by the GCM Deployment model, and the dynamic management
of these resources is done by the RM. A scheduler can ask resources from a RM, and the RM will deliver a resource
through a node abstraction. Once the scheduler no longer requires a node, it is returned to RM for cleaning, pooling
or releasing.

The scheduler can also request specific resources, that fulfill some requirements in order to execute a particular
task. Requirements can be verified with a script attached to the task, the RM uses this script to test resources. A
successful execution of this script on a given resource validates the node.

4 Integration Use Cases

4.1 Problem Solving Environment: SEGL

The application server consists of the experiment engine (ExpEngine), the container application (Task) and the con-
troller component (MonitorSupervisor) (see Figure 2). The MonitorSupervisor controls the work of the runtime system
and informs the Client about the current status of the jobs and the individual processes.

The ExperimentEngine (SEGL) consists of the TaskManager and the JobManager. The TaskManager organizes and
controls the sequence of execution of the program blocks according to the task flow and calls the JobManager to start
Grid jobs. The JobManager is the SEGL’s interface to Grid middleware. It is informed when a job must be executed
and receives the job’s input and output data. After the job is finished the JobManager informs the TaskManager so
that the workflow can be continued. In this work the Proactive job manager was implemented as an implementation of
the generic Job Manager interface that manages SEGL jobs. It takes SEGL jobs, wraps them in a ProActive adapter
object and sends them to a ProActive scheduler. It also keeps polling the scheduler for the jobs status. It manages input
and output files by wrapping the file transfer tasks in the adapter and does the transfer in pulling style from the target
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Figure 3: Calcium integration with Scheduler

machine. This allows file transfers to the job without having to know about the job’s location during its submission to
the scheduler. When a Grid job is finished it cleans up and then notifies its status to SEGL.

The Scheduler Component is responsible for the placement of SEGL tasks on the GRID, i.e. it is responsible for
deployment. The ProActive Adapter has the SEGL job and all its information embedded in it. It is a wrapper object
that runs on nodes assigned by the scheduler. It starts by preparing the environment and creating the folders, then it
uses ProActive file transfer mechanisms provide input files and retrieve remote files. It then executes the SEGL task on

the node. Finally, it pushes the resulting files back to the experiment engine. It finally deletes the working directories
and quits.

4.2 Skeleton Framework: Calcium

A root calcium-task is generated for every new skeleton program instance inputted into the framework, and stored in a
ready taskpool. A calcium-task is mainly composed of an instruction execution stack, which represents the program’s
current execution state, and a glue object that corresponds to the result/input of the previous/next instruction.

When a data parallelism instruction is encountered, such as in fork, map, and d&c skeletons, a calcium-task is
dynamically subdivided into calcium-subtasks which can be computed in parallel. Calcium-subtasks are stored in the
ready taskpool and will eventually be computed. Once all calcium-subtasks are finished, their results are returned to
the (parent) calcium-task, which can continue with its own execution or generate new calcium-subtasks. When a root
calcium-task is finished, it is placed in a finished taskpool, and the result is delivered to the user.
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The execution of a skeleton program is thus reduced to the problem of scheduling calcium-tasks in accordance
with the skeletons program’s logic. The integration between Calcium and the ProActive based scheduler is shown in
Figure 3. A Dispatcher module, links the ready taskpool with the scheduler interface. Calcium-tasks are wrapped in
a Job abstraction, which can be submitted to the scheduler. A Listener module is in charge of waiting for finished
Job events from the scheduler. When a Job is finished, the Listener modules retrieves the Job Result from the
scheduler. A Job Result can contain finished calcium-tasks or new calcium-subtasks (which where dynamically
generated). Using the Calcium back-end API, the Listener module stores the finished calcium-tasks into the finished
taskpool, and the new calcium-subtasks into the ready taskpool. As a result, the application invoking the Calcium
front-end API is independent of the lower level execution environment. The resources management, scheduling and
fault tolerance are handled directly by the scheduler.

4.3 Workflow Engine: SAWE

From the programmer viewpoint, a workflow is described and submitted to SAWE adopting the Workflow definition
language XPDL 2.0, an XML-based process modeling language proposed by the WfMC. In XPDL, a workflow con-
sists of one or more activities, which can be actions performed by human actors or automated elaboration performed
by computers. Control structures are delivered for basic sequential, parallel, cycle and conditional paths. XPDL is not
tied to a specific platform for invoking workflow activities, so allowing the definition of an extensible multi-platform
environment in which multiple concrete platforms can be adopted to enact workflow activities.

In this work, we exploited XPDL extensibility and flexibility to easily describe a workflow composed of ProActive-
based activities, transparently executed on available resources of a Grid system, without requiring any modification
to the workflow language. In particular such applications are defined by specifying: (1) POJO as application type
(normally adopted for the invocation of a method on a local Java object); (2) POJO class and method name elements
to respectively specify the class and method to execute on a remote resource; (3) extended attributes adopted to use
ProActive.

Workflow
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| Process Control | \ Resources

schedules activities
Activity Control ¢

| Invoker | »| Scheduler

retrieves Isubmits jo
concrete resource retrieves result
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7
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Performer RI Reflection | Services
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| ProActiveMiddleware
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RI
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Figure 4: Architecture of SAWE

From the implementation viewpoint, when a workflow is submitted, the Process Control component of the
control layer retrieves the process definition, navigates the corresponding graph, and chooses the activities that can be
enacted, on the basis of data and control dependencies specified in the workflow description. When an activity has to
be enacted, the Activity Control component passes it to the Invoker component of the binding level, responsible to
identify the communication middleware to enact the activity. The Invoker interacts with the scheduler, which will be
responsible to deploy, schedule and monitor the execution of the activity (see bold lines and shapes in Figure 4).
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Without the support of the scheduler, ProActive-based activities were statically selected by providing the Invoker
with the XPDL syntactic description of the task (containing functional description and deployment information).
Using such information the Invoker instantiates and configures a ProActive Resource Interface (RI) at interaction
layer specialized to interact with the ProActive middleware. Such ProActive RI has the task to deploy an active object
on the specified resource, and performs the remote method invocation which corresponds to the required application.
By using the scheduler for the deployment and management of ProActive based activities, it is possible to deliver
functionalities of dynamic binding of activities to resources. In this case SAWE is able to enact tasks described by
means only of a syntactic functional description and whose deployment is dynamically managed by the system.

In particular the scheduler API and information retrieved from the XPDL description are adopted to (1) dynami-
cally define a job, composed of a task including the execution of the specific method specified in the XDPL file; (2)
asynchronously submit it to the Scheduler; (3) retrieve execution result when it is required as actual parameter for the
enactment of one or more activities of the application workflow.

In the future, we intend to increase binding capabilities of SAWE, allowing the user to specify, in the XPDL
workflow description, both functional and quality of service requirements for each activity. To this aim, the Invoker
has to interact with a ProActive Resource Manager, which will be responsible, using matching strategies, to choose
the resource which grants specified requirements for the execution of the activity.

5 Conclusion and Perspectives

This paper has proposed a flexible super scheduler based on the ProActive Middleware, which delivers scheduling
services to different high level programming environments.

The scheduler’s features have been validated by integrating three different domain specific high-level programming
environments: a problem solving environment (SEGL), a skeleton framework (Calcium), and a workflow enactment
system (SAWE). Each environment corresponds to a different CoreGRID partner: HLRS, INRIA, and University of
Sannio. The basic features required by these three programming environments have guided the scheduler’s design and
implementation, and are thus sufficient to factor out complex Grid concerns from these high level programming envi-
ronments. The global result that emerged is that the super-scheduling of Grid resources may effectively complement
the features of the considered programming environments, enhancing their functionalities and increasing the efficiency
of Grid resources exploitation.

Nevertheless, some advanced features are still work in progress. For example, a data management abstractions
at the scheduler level is missing. This is an important aspect that is currently handled directly by the concerned
programming environments. As future work, we are encapsulating the scheduler into GCM components, so that it
could be composed in GCM applications and exploited for dynamic deployment of components on Grid resources.
Another interesting future direction is a multi-layer integration among the programming environments experimented
in this work and the Scheduler. In particular it could be useful to implement the problem solving environment SEGL
exploiting the enactment functionalities of SAWE, and to exploit the Calcium skeleton framework to enact in SAWE
composite tasks composed following parallel and distributed programming patterns.
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